NEET MDS Lessons
Periodontology
PERIOTEST Device in Periodontal Assessment
The PERIOTEST device is a valuable tool used in dentistry to assess the mobility of teeth and the reaction of the periodontium to applied forces. This lecture covers the principles of the PERIOTEST device, its measurement scale, and its clinical significance in evaluating periodontal health.
Function: The PERIOTEST device measures the reaction of the periodontium to a defined percussion force applied to the tooth. This is done using a tapping instrument that delivers a controlled force to the tooth.
Contact Time: The contact time between the tapping head and the tooth varies between 0.3 and 2 milliseconds. This duration is typically shorter for stable teeth compared to mobile teeth, allowing for a quick assessment of tooth stability.
PERIOTEST Scale
The PERIOTEST scale ranges from -8 to +50, with specific ranges indicating different levels of tooth mobility:
Readings | Inference |
---|---|
-8 to 9 | Clinically firm teeth |
10 to 19 | First distinguishable sign of movement |
20 to 29 | Crown deviates within 1 mm of its normal position |
30 to 50 | Mobility is readily observed |
Clinical Significance
Assessment of Tooth Mobility:
The PERIOTEST device provides a quantitative measure of tooth mobility,
which is essential for diagnosing periodontal disease and assessing the
stability of teeth.
Correlation with Other Measurements:
The PERIOTEST values correlate well with:
-
Tooth Mobility Assessed with a Metric System: This allows for a standardized approach to measuring mobility, enhancing the reliability of assessments.
-
Degree of Periodontal Disease and Alveolar Bone Loss: Higher mobility readings often indicate more severe periodontal disease and greater loss of supporting bone, making the PERIOTEST a useful tool in monitoring disease progression.
Treatment Planning:
Understanding the mobility of teeth can aid in treatment planning,
including decisions regarding periodontal therapy, splinting of mobile teeth, or
extraction in cases of severe mobility.
Finger Rests in Dental Instrumentation
Use of finger rests is essential for providing stability and control during procedures. A proper finger rest allows for more precise movements and reduces the risk of hand fatigue.
Importance of Finger Rests
- Stabilization: Finger rests serve to stabilize the hand and the instrument, providing a firm fulcrum that enhances control during procedures.
- Precision: A stable finger rest allows for more accurate instrumentation, which is crucial for effective treatment and patient safety.
- Reduced Fatigue: By providing support, finger rests help reduce hand and wrist fatigue, allowing the clinician to work more comfortably for extended periods.
Types of Finger Rests
-
Conventional Finger Rest:
- Description: The finger rest is established on the tooth surfaces immediately adjacent to the working area.
- Application: This is the most common type of finger rest, providing direct support for the hand while working on a specific tooth. It allows for precise movements and control during instrumentation.
-
Cross Arch Finger Rest:
- Description: The finger rest is established on the tooth surfaces on the other side of the same arch.
- Application: This technique is useful when working on teeth that are not directly adjacent to the finger rest. It provides stability while allowing access to the working area from a different angle.
-
Opposite Arch Finger Rest:
- Description: The finger rest is established on the tooth surfaces of the opposite arch (e.g., using a mandibular arch finger rest for instrumentation on the maxillary arch).
- Application: This type of finger rest is particularly beneficial when accessing the maxillary teeth from the mandibular arch, providing a stable fulcrum while maintaining visibility and access.
-
Finger on Finger Rest:
- Description: The finger rest is established on the index finger or thumb of the non-operating hand.
- Application: This technique is often used in areas where traditional finger rests are difficult to establish, such as in the posterior regions of the mouth. It allows for flexibility and adaptability in positioning.
Progression from Gingivitis to Periodontitis
The transition from gingivitis to periodontitis is a critical process in periodontal disease progression. This lecture will outline the key stages involved in this progression, highlighting the changes in microbial composition, host response, and tissue alterations.
Pathway of Progression
-
Establishment and Maturation of Supragingival Plaque:
- The process begins with the formation of supragingival plaque, which is evident in gingivitis.
- As this plaque matures, it becomes more complex and can lead to changes in the surrounding tissues.
-
Migration of Periodontopathogenic Bacteria:
- When the microbial load overwhelms the local host immune response, pathogenic bacteria migrate subgingivally (below the gum line).
- This migration establishes a subgingival niche that is conducive to the growth of periodontopathogenic bacteria.
Initial Lesion
- Timeline:
- The initial lesion, characterized by subclinical gingivitis, appears approximately 2 to 4 days after the colonization of the gingival sulcus by bacteria.
- Clinical Manifestations:
- Vasculitis: Inflammation of blood vessels in the gingival tissue.
- Exudation of Serous Fluid: Increased flow of gingival crevicular fluid (GCF) from the gingival sulcus.
- Increased PMN Migration: Polymorphonuclear neutrophils (PMNs) migrate into the sulcus in response to the inflammatory process.
- Alteration of Junctional Epithelium: Changes occur at the base of the pocket, affecting the integrity of the junctional epithelium.
- Collagen Dissolution: Perivascular collagen begins to dissolve, contributing to tissue breakdown.
Early Lesion
- Timeline:
- The early lesion forms within 4 to 7 days after the initial lesion due to the continued accumulation of bacterial plaque.
- Characteristics:
- Leukocyte Accumulation: There is a significant increase in leukocytes at the site of acute inflammation, indicating an ongoing immune response.
- Cytopathic Alterations: Resident fibroblasts undergo cytopathic changes, affecting their function and viability.
- Collagen Loss: Increased collagen loss occurs within the marginal gingiva, contributing to tissue destruction.
- Proliferation of Basal Cells: The basal cells of the junctional epithelium proliferate in response to the inflammatory environment.
Hypercementosis
Hypercementosis is a dental condition characterized by the excessive deposition of cementum on the roots of teeth. This condition can have various clinical implications and is associated with several underlying factors. Understanding hypercementosis is essential for dental professionals in diagnosing and managing related conditions.
Characteristics of Hypercementosis
-
Definition:
- Hypercementosis is defined as a generalized thickening of the cementum, often accompanied by nodular enlargement of the apical third of the root. It can also manifest as spike-like excrescences known as cemental spikes.
-
Forms of Hypercementosis:
- Generalized Type: Involves a uniform thickening of cementum across multiple teeth.
- Localized Type: Characterized by nodular
enlargements or cemental spikes, which may result from:
- Coalescence of cementicles adhering to the root.
- Calcification of periodontal fibers at their insertion points into the cementum.
Radiographic Appearance
- Radiographic Features:
- On radiographs, hypercementosis is identified by the presence of a radiolucent shadow of the periodontal ligament and a radiopaque lamina dura surrounding the area of hypercementosis, similar to normal cementum.
- Differentiation:
- Hypercementosis can be differentiated from other conditions such as periapical cemental dysplasia, condensing osteitis, and focal periapical osteopetrosis, as these entities are located outside the shadow of the periodontal ligament and lamina dura.
Etiology of Hypercementosis
-
Varied Etiology:
- The exact cause of hypercementosis is not completely understood, but
several factors have been identified:
- Spike-like Hypercementosis: Often results from excessive tension due to orthodontic appliances or occlusal forces.
- Generalized Hypercementosis: Can occur in
various circumstances, including:
- Teeth Without Antagonists: In cases where teeth lack opposing teeth, hypercementosis may develop as a compensatory mechanism to keep pace with excessive tooth eruption.
- Low-Grade Periapical Irritation: Associated with pulp disease, where hypercementosis serves as compensation for the loss of fibrous attachment to the tooth.
- The exact cause of hypercementosis is not completely understood, but
several factors have been identified:
-
Systemic Associations:
- Hypercementosis may also be observed in systemic conditions,
including:
- Paget�s Disease: Characterized by hypercementosis of the entire dentition.
- Other Conditions: Acromegaly, arthritis, calcinosis, rheumatic fever, and thyroid goiter have also been linked to hypercementosis.
- Hypercementosis may also be observed in systemic conditions,
including:
Clinical Implications
-
Diagnosis:
- Recognizing hypercementosis is important for accurate diagnosis and treatment planning. Radiographic evaluation is essential for distinguishing hypercementosis from other dental pathologies.
-
Management:
- While hypercementosis itself may not require treatment, it can complicate dental procedures such as extractions or endodontic treatments. Understanding the condition can help clinicians anticipate potential challenges.
-
Monitoring:
- Regular monitoring of patients with known systemic conditions associated with hypercementosis is important to manage any potential complications.
Zones of Periodontal Disease
Listgarten described four distinct zones that can be observed in periodontal lesions. These zones may blend with each other and may not be present in every case.
Zones of Periodontal Disease
-
Zone 1: Bacterial Zone
- Description: This is the most superficial zone, consisting of a diverse array of bacteria.
- Characteristics:
- The bacterial zone is primarily composed of various microbial species, including both pathogenic and non-pathogenic bacteria.
- This zone is critical in the initiation and progression of periodontal disease, as the presence of specific bacteria can trigger inflammatory responses in the host.
-
Zone 2: Neutrophil Rich Zone
- Description: This zone contains numerous leukocytes, predominantly neutrophils.
- Characteristics:
- The neutrophil-rich zone is indicative of the body�s immune response to the bacterial invasion.
- Neutrophils are the first line of defense and play a crucial role in phagocytosing bacteria and releasing inflammatory mediators.
- The presence of a high number of neutrophils suggests an acute inflammatory response, which is common in active periodontal disease.
-
Zone 3: Necrotic Zone
- Description: This zone consists of disintegrated tissue cells, fibrillar material, remnants of collagen fibers, and spirochetes.
- Characteristics:
- The necrotic zone reflects tissue destruction and is characterized by the presence of dead or dying cells.
- Fibrillar material and remnants of collagen fibers indicate the breakdown of the extracellular matrix, which is essential for maintaining periodontal tissue integrity.
- Spirochetes, which are associated with more aggressive forms of periodontal disease, can also be found in this zone, contributing to the necrotic process.
-
Zone 4: Zone of Spirochetal Infiltration
- Description: This zone consists of well-preserved tissue that is infiltrated with large and medium spirochetes.
- Characteristics:
- The zone of spirochetal infiltration indicates a more chronic phase of periodontal disease, where spirochetes invade the connective tissue.
- The presence of well-preserved tissue suggests that while spirochetes are present, the tissue has not yet undergone extensive necrosis.
- This zone is significant as it highlights the role of spirochetes in the pathogenesis of periodontal disease, particularly in cases of necrotizing periodontal diseases.
Assessing New Attachment in Periodontal Therapy
Assessing new attachment following periodontal therapy is crucial for evaluating treatment outcomes and understanding the healing process. However, various methods of assessment have limitations that must be considered. This lecture will discuss the reliability of different assessment methods for new attachment, including periodontal probing, radiographic analysis, and histologic methods.
1. Periodontal Probing
-
Assessment Method: Periodontal probing is commonly used to measure probing depth and attachment levels before and after therapy.
-
Limitations:
- Coronal Positioning of Probe Tip: After therapy, when the inflammatory lesion is resolved, the probe tip may stop coronal to the apical termination of the epithelium. This can lead to misleading interpretations of attachment gain.
- Infrabony Defects: Following treatment of infrabony defects, new bone may form so close to the tooth surface that the probe cannot penetrate. This can result in a false impression of improved attachment levels.
- Interpretation of Results: A gain in probing attachment level does not necessarily indicate a true gain of connective tissue attachment. Instead, it may reflect improved health of the surrounding tissues, which increases resistance to probe penetration.
2. Radiographic Analysis and Reentry Operations
-
Assessment Method: Radiographic analysis involves comparing radiographs taken before and after therapy to evaluate changes in bone levels. Reentry operations allow for direct inspection of the treated area.
-
Limitations:
- Bone Fill vs. New Attachment: While radiographs can provide evidence of new bone formation (bone fill), they do not document the formation of new root cementum or a new periodontal ligament. Therefore, radiographic evidence alone cannot confirm the establishment of new attachment.
3. Histologic Methods
-
Assessment Method: Histologic analysis involves examining tissue samples under a microscope to assess the formation of new attachment, including new cementum and periodontal ligament.
-
Advantages:
- Validity: Histologic methods are considered the only valid approach to assess the formation of new attachment accurately.
-
Limitations:
- Pre-Therapy Assessment: Accurate assessment of the attachment level prior to therapy is essential for histologic analysis. If the initial attachment level cannot be determined with certainty, it may compromise the validity of the findings.
Gingivitis
Gingivitis is an inflammatory condition of the gingiva that can progress through several distinct stages. Understanding these stages is crucial for dental professionals in diagnosing and managing periodontal disease effectively. This lecture will outline the four stages of gingivitis, highlighting the key pathological changes that occur at each stage.
I. Initial Lesion
- Characteristics:
- Increased Permeability: The microvascular bed in the gingival tissues becomes more permeable, allowing for the passage of fluids and immune cells.
- Increased GCF Flow: There is an increase in the flow of gingival crevicular fluid (GCF), which is indicative of inflammation and immune response.
- PMN Cell Migration: The migration of
polymorphonuclear leukocytes (PMNs) is facilitated by various adhesion
molecules, including:
- Intercellular Cell Adhesion Molecule 1 (ICAM-1)
- E-selectin (ELAM-1) in the dentogingival vasculature.
- Clinical Implications: This stage marks the beginning of the inflammatory response, where the body attempts to combat the initial bacterial insult.
II. Early Lesion
-
Characteristics:
- Leukocyte Infiltration: There is significant infiltration of leukocytes, particularly lymphocytes, into the connective tissue of the junctional epithelium.
- Fibroblast Degeneration: Several fibroblasts within the lesion exhibit signs of degeneration, indicating tissue damage.
- Proliferation of Basal Cells: The basal cells of the junctional and sulcular epithelium begin to proliferate, which may be a response to the inflammatory process.
-
Clinical Implications: This stage represents a transition from initial inflammation to more pronounced tissue changes, with the potential for further progression if not managed.
III. Established Lesion
-
Characteristics:
- Predominance of Plasma Cells and B Lymphocytes: There is a marked increase in plasma cells and B lymphocytes, indicating a more advanced immune response.
- Increased Collagenolytic Activity: The activity of collagen-degrading enzymes increases, leading to the breakdown of collagen fibers in the connective tissue.
- B Cell Subclasses: The B cells present in the established lesion are predominantly of the IgG1 and IgG3 subclasses, which are important for the immune response.
-
Clinical Implications: This stage is characterized by chronic inflammation, and if left untreated, it can lead to further tissue destruction and the transition to advanced lesions.
IV. Advanced Lesion
-
Characteristics:
- Loss of Connective Tissue Attachment: There is significant loss of connective tissue attachment to the teeth, which can lead to periodontal pocket formation.
- Alveolar Bone Loss: Extensive damage occurs to the alveolar bone, contributing to the overall loss of periodontal support.
- Extensive Damage to Collagen Fibers: The collagen fibers in the gingival tissues are extensively damaged, further compromising the structural integrity of the gingiva.
- Predominance of Plasma Cells: Plasma cells remain predominant, indicating ongoing immune activity and inflammation.
-
Clinical Implications: This stage represents the transition from gingivitis to periodontitis, where irreversible damage can occur. Early intervention is critical to prevent further progression and loss of periodontal support.