NEET MDS Synopsis
Branches of Anatomy
Anatomy
Gross anatomy-study of structures that can be identified with the naked eye; usually involves the use of cadavers
Microscopic anatomy (histology)-study of cells that compose tissues and organs; involves the use of a microscope to study the details of the species
Developmental anatomy (embryology)-study of an individual from beginning as a single cell to birth
Comparative anatomy -comparative study of the animal structure in regard to similar organs or regions
Ciprofloxacin
Pharmacology
Ciprofloxacin : Ciprofloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase
Ciprofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria.
Enterobacteriaceae, Vibrio, Hemophilus influenzae, Neisseria gonorrhoeae
Neisseria menigitidis, Moraxella catarrhalis, Brucella, Campylobacter,
Mycobacterium intracellulare, Legionella sp., Pseudomonas aeruginosa,
Bacillus anthracis - that causes anthrax
Weak activity against: Streptococcus pneumoniae,
No activity against: Bacteroides, Enterococcus faecium, Ureaplasma urealyticum and others
It is contraindicated in children, pregnancy, and epilepsy.
Ciprofloxacin can cause photosensitivity reactions and can elevate plasma
theophylline levels to toxic values. It can also cause constipation and sensitivity to caffeine.
Dosage in respiratory infections is 500-1500 mg a day in 2 doses.
Amelogenesis and Enamel
Dental Anatomy
Amelogenesis and Enamel
Enamel is highly mineralized: 85% hydroxyapatite crystals
Enamel formation is a two-step process
The first step produces partially mineralized enamel: 30% (secretory)
The second step: Influx of minerals, removal of water and organic matrix (maturative)
Again, dentin is the prerequisite of enamel formation (reciprocal induction)
Stratum intermedium: high alkaline phosphatase activity
Differentiation of ameloblasts: Increase in glycogen contents
Formation of the enamel matrix
Enamel proteins, enzymes, metalloproteinases, phosphatases, etc.
Enamel proteins: amelogenins (90%), enamelin, tuftelin, and amelin
Amelogenins: bulk of organic matrix
Tuftelin: secreted at the early stages of amelogenesis (area of the DE junction)
Enamelin: binds to mineral
Amelin
Mineralization of enamel
No matrix vesicles
Immediate formation of crystallites
Intermingling of enamel crystallites with dentin
"Soft" enamel is formed
Histologic changes
Differentiation of inner enamel epithelium cells. They become ameloblasts
Tomes' processes: saw-toothed appearance
Collapse of dental organ
Formation of the reduced enamel epithelium
Hard tissue formation (Amelogenesis )
Enamel formation is called amelogenesis and occurs in the crown stage of tooth development. "Reciprocal induction" governs the relationship between the formation of dentin and enamel; dentin formation must always occur before enamel formation. Generally, enamel formation occurs in two stages: the secretory and maturation stages. Proteins and an organic matrix form a partially mineralized enamel in the secretory stage; the maturation stage completes enamel mineralization.
In the secretory stage, ameloblasts release enamel proteins that contribute to the enamel matrix, which is then partially mineralized by the enzyme alkaline phosphatase. The appearance of this mineralized tissue, which occurs usually around the third or fourth month of pregnancy, marks the first appearance of enamel in the body. Ameloblasts deposit enamel at the location of what become cusps of teeth alongside dentin. Enamel formation then continues outward, away from the center of the tooth.
In the maturation stage, the ameloblasts transport some of the substances used in enamel formation out of the enamel. Thus, the function of ameloblasts changes from enamel production, as occurs in the secretory stage, to transportation of substances. Most of the materials transported by ameloblasts in this stage are proteins used to complete mineralization. The important proteins involved are amelogenins, ameloblastins, enamelins, and tuftelins. By the end of this stage, the enamel has completed its mineralization.
Acute pericarditis
General Pathology
Acute pericarditis
1. Characterized by inflammation of the pericardium.
2. Causes include:
a. Viral infection.
b. Bacterial infection, including Staphylococcus, Pneumococcus.
c. Tuberculosis.
d. MI.
e. Systemic lupus erythematosus.
f. Rheumatic fever.
3. Signs and symptoms include:
a. Pericardial friction rub on cardiac auscultation.
b. Angina.
c. Fever.
4. Consequences include constrictive pericarditis,which results from fusion and scarring of the pericardium. This may lead to the restriction of ventricular expansion, preventing the heart chambers from filling normally.
RINGLESS INVESTMENT TECHNIQUE
Dental Materials
RINGLESS INVESTMENT TECHNIQUE
Used for phosphate bonded investments .
This method uses paper or plastic casting ring .
It is designed to allow urestricted expansion .
Useful for high melting alloys .
Infantile Osteomyelitis
Oral Pathology
Infantile Osteomyelitis
Osteomyelitis Maxillaries Neonatarum, Maxillitis of infancy
Osteomyelitis in the jaws of new born infants occurs almost exclusively in maxilla.
Etiology
Trauma – through break in mucosa cause during delivery.
Infection of maxillary sinus
Paunz & Ramon et al believe that disease caused through infection from the nose.
Hematogenous spread through streptococci & pneumococci
Clinical features
Fever, anorexia & intestinal disturbances.
swelling or redness below the inner canthus of the eye in lacrimal region.
Followed by marked edema of the eyelids on the affected side.
Next, alveolus & palate in region of first deciduous molar become swollen.
Pus discharge from affected sites
D/D for Infantile Osteomyelitis
Dacrocystitis neonatarum
Orbital cellulitis
Ophthalmia neonatarum
Infantile cortical hyperostosis
TREATMENT
Intravenous antibiotics, preferably penicillin.
Culture & sensitivity testing
Incision & drainage of fluctuant areas
Sequestrectomy
Supportive therapy
Structure of a nerve
PhysiologyStructure of a nerve:
A peripheral nerve is arranged much like a muscle in terms of its connective tissue. It has an outer covering which forms a sheath around the nerve, called the epineurium. Often a nerve will run together with an artery and vein and their connective coverings will merge. Nerve fibers, which are axons, organize into bundles known as fascicles with each fascicle surrounded by the perineurium. Between individual nerve fibers is an inner layer of endoneurium.
The myelin sheath in peripheral nerves consists of Schwann cells wrapped in many layers around the axon fibers. Not all fibers in a nerve will be myelinated, but most of the voluntary fibers are. The Schwann cells are portrayed as arranged along the axon like sausages on a string. Gaps between the Schwann cells are called nodes of Ranvier. These nodes permit an impulse to travel faster because it doesn't need to depolarize each area of a membrane, just the nodes. This type of conduction is called saltatory conduction and means that impulses will travel faster in myelinated fibers than in unmyelinated ones.
The myelin sheath does several things:
1) It provides insulation to help prevent short circuiting between fibers.
2) The myelin sheath provides for faster conduction.
3) The myelin sheath provides for the possibility of repair of peripheral nerve fibers. Schwann cells help to maintain the micro-environments of the axons and their tunnel (the neurilemma tunnel) permits re-connection with an effector or receptor CNS fibers, not having the same type of myelination accumulate scar tissue after damage, which prevents regeneration.
MANDIBULAR SECOND MOLAR
Dental Anatomy
MANDIBULAR SECOND MOLAR
Facial: When compared to the first molar, the second molar crown is shorter both mesiodistally and from the cervix to the occlusal surface. The two well-developed buccal cusps form the occlusal outline. There is no distal cusp as on the first molar. A buccal developmental groove appears between the buccal cusps and passes midway down the buccal surface toward the cervix.
Lingual: The crown is shorter than that of the first molar. The occlusal outline is formed by the mesiolingual and distolingal cusps.
Proximal: The mesial profile resembles that of the first molar. The distal profile is formed by the distobuccal cusp, distal marginal ridge, and the distolingual cusp. Unlike the first molar, there is no distal fifth cusp.
Occlusal: There are four well developed cusps with developmental grooves that meet at a right angle to form the distinctive "+" pattern characteristic of this tooth.
Contact Points; When moving distally from first to third molar, the proximal surfaces become progressively more rounded. The net effect is to displace the contact area cervically and away from the crest of the marginal ridges.
Roots:-The mandibular second molar has two roots that are smaller than those of the first molar. When compared to first molar roots, those of the second tend to be more parallel and to have a more distal inclination.