Talk to us?

NEETMDS- courses, NBDE, ADC, NDEB, ORE, SDLE-Eduinfy.com

NEET MDS Synopsis

Congestive heart failure (CHF)
General Pathology

Congestive heart failure (CHF)
A. Left-sided CHF

1. May result from nearly any heart disease affecting the left ventricle (e.g., ischemic heart disease, hypertension, valvular disease).
2. Common signs and symptoms include:
a. Dyspnea (shortness of breath) exacerbated by exertion.
b. Paroxysmal nocturnal dyspnea.
c. Orthopnea.
d. Tachypnea.
e. Pleural effusion.
f. Consequences include pulmonary edema.

B. Right-sided CHF

1. The most common cause of right heart failure is left heart failure. It uncommonly occurs in isolation. Other causes include left-sided lesions (mitral stenosis), pulmonary hypertension, cardiomyopathy, and tricuspid or pulmonary valvular disease.
2. Frequently presents with peripheral edema, especially in the ankles and feet (i.e., dependent edema), enlarged liver or spleen, and distention of the neck veins.

Haemolysis due to drugs and chemicals
General Pathology

Haemolysis due to drugs and chemicals

This can be caused by :

1. Direct toxic action.
    -> Naphthalene.
    -> Nitrobenzene.
    -> Phenacetin.
    -> Lead.

Heinz bodies are seen in abundance.

2. Drug action on G-6-PD deficient RBC
3. Immunological mechanism which may be : 
    -> Drug induced  autoantibody haemolysis, Antibodies are directed against RBC.
    -> Hapten-cell mechanism where antibodies are directed against which is bound to cell surface e.g. Penicilin.
 



GENETIC VARIATION
General Microbiology

GENETIC VARIATION

Two methods are known for genetic variation in bacteria: mutation and gene transfer.

Mutation : Any change in the sequence of bases of DNA, irrespective of detectable changes in the cell phenotype. Mutations may be spontaneous or induced by various agents which are known as mutagens. 

Spontaneous Mutations: Arise from enzymatic imperfections during DNA replications or with transient insertions of transposable elements.

Induced Mutations: Mutation by physical and chemical mutagens.

Physical mutagens  ultraviolet rays and high-energy ionizing radiations. The primary effect of UV rays on DNA is the production of pyrmidine dimers whereas ionizing radiations cause single_stranded breaks the DNA molecules.

Chemical mutagens :Affecting nucleotide sequence

(i) Agents which cause error in base pairing (e.g. nitrous acid and alkylating agents).
(ii) Agents which cause errors in DNA replication (e.g. acridine dyes such as acridine orange and profiavine).
(iii) Base analogs which are incorporated into DNA and cause replication errors (e.g. 5-bromouracil)

Gene Transfer

Transformation: Uptake of naked DNA

Transduction    : Infection by a nonlethal bacteriophage

Conjugation    : Mating between cells in contact

Protoplast fusion

Transformation: Gene transfer by soluble DNA is called as transformation. it requires that DNA be absorbed by the cell, gain entrance to the cytoplasm and undergo recombination with the host genome. 

Artificial Transformation(transfection) :Some of the bacteria (such as Escherichia coli) resist transformation until they are subjected to some special treatment such as CaCl2 to make the bacterium more permeable to DNA. Such modified cells can also take up intact double stranded DNA extracted from viruses or in the shape of plasmids. Though the process is same as transformation, it is 9 as transfection because it results in infection by an abnormal route

Transduction :The type of gene transfer in which the DNA of one bacterial cell is introduced into another bacterial cell by viral infection is known as transduction. This introduces only a small fragment of DNA. Because the DNA is protected from damage by the surrounding phage coat, transduction is an easier to perform and more reproducible process than transduction. ,

Two types of transduction are known.

- Generalized transduction When a bacteriophage picks up fragments of host DNA at random and can transfer any genes

-  Specialised transduction: phage DNA that has been integrated into the host chromosome is excised along with a few adjacent genes, which the phage can then transfer.

After entry into the host cell, the phage DNA gets incorporated into the host chromosome in such a way that the two genomes are linearly contiguous (lysogeny). The phage genome in this stage is known as prophage, The host cell acquires a significant new property as a consequence of lysogeny because it becomes immune to infection by homologous phage. This is hence called as lysogenic conversion and endow toxigenicity to Corynebacterium diphtheriae

Abortive Transduction :phage DNA fails to integrated into the host chromosome, the process is called as abortive transduction The phage DNA does not replicate and along with binary fission Of the host it goes into one of the daughter cells.

Conjugation :This is defined as the transfer of DNA directly from on bacterial. .cell to another by a mechanism that requires cell-to-cell contact. 

The capacity to donate DNA depends upon the possession of the fertility (F) factor. The F pili  also retard male-male union. Concomitant with effective male-female pair formation, the circular DNA bearing the F factor is converted to a linear form that is transferred to the female cell in a sequential manner. DNA replication occurs in the male cell and the newly synthesized, semiconserved DNA molecule remains in the male. This ensures postmating characters of the male.

Conjugation in Different Bacteria: Unusual form of plasmid transfer, called phase mediated conjugation has  been reported to occur with some strains of Staphylococcus aureus.

Protoplast Fusion: Also called as genetic transfusion. Under osmotically buffered Conditions protoplast fusion takes place by joining of cell membrane and generation of cytoplasmic bridges through which genetic material can be exchanged.

Transposons: Transposons  Tn  are  DNA sequences which are incapable of autonomous existence and which transpose blocks of genetic material back and forth between cell Chromosome and smaller replicons such as plasmids. insertion sequences (IS ) are another similar group of nucleotides which can move from one chromosome to another

Genetic material. IS and  Tn are collectively also known as transposable elements or Jumping genes. These are now recognised to play an important role in bringing about vanous types of mutations.


 

MAGNESIUM
Biochemistry

MAGNESIUM

The normal serum level of Magnesium is 1.8 to 2.2. mg/dl.

Functions of Magnesium

(a) Irritability of neuromuscular tissues is lowered by Magnesium

(b) Magnesium deficiency leads to decrease in Insulin dependent uptake of glucose

(c) Magnesium supplementation improves glucose tolerance

Causes such as liver cirrhosis, protein calorie malnutrition and hypo para thyroidism leads to hypomagnesemia

The main causes of hypermagnesemia includes renal failure, hyper para thyroidism, rickets, oxalate poisoning and multiple myeloma.

HISTOLOGY OF THE ODONTOBLAST
Dental Anatomy

HISTOLOGY OF THE ODONTOBLAST

Formation of Dentin

Mantle dentin: First formed dentin
Type I collagen with ground substance
Formation of the odontoblast process

Matrix vesicles
Appearance of hydroxyapatite crystals
 

Predentin
Primary physiologic (circumpulpal) dentin
All organic matrix is formed from odontoblasts
Smaller collagen fibers
Presence of phosphophoryn

Mineralization
Globular calcification
Interglobular dentin: Areas of incomplete calcification
Incremental lines of von Ebner: Daily, 4mm of organic matrix is deposited. Also every 5 days the arrangement of collagen fibers changes. This creates the incremental lines of von Ebner.
Intratubular dentin

Dentin tubules
S-shaped in the coronal aspect, straight in root dentin

Von Korff fibers
They are an artifact

ANTIGEN-ANTIBODY REACTIONS
General Microbiology

ANTIGEN-ANTIBODY REACTIONS

I. NATURE OF ANTIGEN-ANTIBODY REACTIONS

A. Lock and Key Concept 

The combining site of an antibody is located in the Fab portion of the molecule and is constructed from the hypervariable regions of the heavy and light chains. Antigen-antibody reactions is one of a key (i.e. the antigen) which fits into a lock (i.e. the antibody).

B. Non-covalent Bonds 

The bonds that hold the antigen to the antibody combining site are all non-covalent in nature. These include hydrogen bonds, electrostatic bonds, Van der Waals forces and hydrophobic bonds. 

C. Reversibility
Since antigen-antibody reactions occur via non-covalent bonds, they are by their nature reversible.
II. AFFINITY AND AVIDITY

A. Affinity 
Antibody affinity is the strength of the reaction between a single antigenic determinant and a single combining site on the antibody. It is the sum of the attractive and repulsive forces operating between the antigenic determinant and the combining site of the antibody .

B. Avidity
Avidity is a measure of the overall strength of binding of an antigen with many antigenic determinants and multivalent antibodies. Avidity is influenced by both the valence of the antibody and the valence of the antigen. Avidity is more than the sum of the individual affinities.

III. SPECIFICITY AND CROSS REACTIVITY

A. Specificity 

Specificity refers to the ability of an individual antibody combining site to react with only one antigenic determinant or the ability of a population of antibody molecules to react with only one antigen. In general, there is a high degree of specificity in antigen-antibody reactions. 

B. Cross reactivity 

Cross reactivity refers to the ability of an individual antibody combining site to react with more than one antigenic determinant or the ability of a population of antibody molecules to react with more than one antigen. 


 

DIAGNOSIS
Pharmacology

DIAGNOSIS

Affective disorders:
I. unipolar depression – depression alone
bipolar affective disorder – alternating II. bipolar affective disorder – alternating depression and mania

Diagnosis is based on 

At least five of the following for 2 weeks
I. Depressed mood most of the day
II. Markedly diminished interest or pleasureII. Markedly diminished interest or pleasure
III. Significant weight loss or weight
IV. Insomnia or hypersomnia
V. Psychomotor agitation or retardation
VI. Fatigue or loss of energy
VII. Feelings of worthlessness or excessive guilt
VIII. Diminished ability to think or concentrate, 
IX. Recurrent thoughts of death

Underlying biological basis for depression is a deficiency of the monoamine neurotransmitters  norepinephrine and/or serotonin in the brain.

Meperidine
Pharmacology

Meperidine (Demerol)

Meperidine is a phenylpiperidine and has a number of congeners. It is mostly effective in the CNS and bowel


Produces analgesia, sedation, euphoria and respiratory depression.
Less potent than morphine, 80-100 mg meperidine equals 10 mg morphine.
Shorter duration of action than morphine (2-4 hrs).
Meperidine has greater excitatory activity than does morphine and toxicity may lead to convulsions.
Meperidine appears to have some atropine-like activity.
Does not constrict the pupils to the same extent as morphine.
Does not cause as much constipation as morphine.
Spasmogenic effect on GI and biliary tract smooth muscle is less pronounced than that produced by morphine.
Not an effective antitussive agent.
In contrast to morphine, meperidine increases the force of oxytocin-induced contractions of the uterus.
Often the drug of choice during delivery due to its lack of inhibitory effect on uterine contractions and its relatively short duration of action.
It has serotonergic activity when combined with monoamine oxidase inhibitors, which can produce serotonin toxicity (clonus, hyperreflexia, hyperthermia, and agitation)

Explore by Exams