Talk to us?

NEET MDS Synopsis - Lecture Notes

📖 General Surgery

Showing page 1 of 5 (20 total records)

 INFLAMMATION

General Surgery

Inflammation is the respone of the body to an irritant.

Stages of Inflammation

1. General: Temperature Raised. In severe cases bacteremia or septicemia ,rigors may occur.

2. Local: classical signs of inflammation are due to hyperemia and inflammation exudate

i) Heat:  inflammed area feels warmer than the surrounding tissues.

ii) Redness

iii) Tenderness: Due to pressure of exudate on the surrounding nerves  If the exudate is  under tension, e.g. a furuncle (boil) of the ear, pain is severe.

iv) swelling

v) Loss of function.

The termination of Inflammation

This may be by:1. Resolution 2. Suppuration 3. Ulceration 4. Ganangren s. Fibrosis

Management

i. Increase the patients resistance., Rest,  Relief of pain by analgesics,  Diet: High protein and high calorie diet with vitamins,  Antibiotics,  Prevent further contamination of wound.

Surgical measures

1. Excision: If possible as in appendicectomy.

2. Incision and drainage: If an abscess forms.

Tracheostomy
General Surgery

Tracheostomy

Tracheostomy is a surgical procedure that involves creating an opening in the trachea (windpipe) to facilitate breathing. This procedure is typically performed when there is a need for prolonged airway access, especially in cases where the upper airway is obstructed or compromised. The incision is usually made between the 2nd and 4th tracheal rings, as entry through the 1st ring can lead to complications such as tracheal stenosis.

Indications

Tracheostomy may be indicated in various clinical scenarios, including:

  1. Acute Upper Airway Obstruction: Conditions such as severe allergic reactions, infections (e.g., epiglottitis), or trauma that obstruct the airway.
  2. Major Surgery: Procedures involving the mouth, pharynx, or larynx that may compromise the airway.
  3. Prolonged Mechanical Ventilation: Patients requiring artificial ventilation for an extended period, such as those with respiratory failure.
  4. Unconscious Patients: Situations involving head injuries, tetanus, or bulbar poliomyelitis where airway protection is necessary.

Procedure

Technique

  • Incision: A horizontal incision is made in the skin over the trachea, typically between the 2nd and 4th tracheal rings.
  • Dissection: The subcutaneous tissue and muscles are dissected to expose the trachea.
  • Tracheal Entry: An incision is made in the trachea, and a tracheostomy tube is inserted to maintain the airway.

Complications of Tracheostomy

Tracheostomy can be associated with several complications, which can be categorized into intraoperative, early postoperative, and late postoperative complications.

1. Intraoperative Complications

  • Hemorrhage: Bleeding can occur during the procedure, particularly if major blood vessels are inadvertently injured.
  • Injury to Paratracheal Structures:
    • Carotid Artery: Injury can lead to significant hemorrhage and potential airway compromise.
    • Recurrent Laryngeal Nerve: Damage can result in vocal cord paralysis and hoarseness.
    • Esophagus: Injury can lead to tracheoesophageal fistula formation.
    • Trachea: Improper technique can cause tracheal injury.

2. Early Postoperative Complications

  • Apnea: Temporary cessation of breathing may occur, especially in patients with pre-existing respiratory issues.
  • Hemorrhage: Postoperative bleeding can occur, requiring surgical intervention.
  • Subcutaneous Emphysema: Air can escape into the subcutaneous tissue, leading to swelling and discomfort.
  • Pneumomediastinum and Pneumothorax: Air can enter the mediastinum or pleural space, leading to respiratory distress.
  • Infection: Risk of infection at the incision site or within the tracheostomy tube.

3. Late Postoperative Complications

  • Difficult Decannulation: Challenges in removing the tracheostomy tube due to airway swelling or other factors.
  • Tracheocutaneous Fistula: An abnormal connection between the trachea and the skin, which may require surgical repair.
  • Tracheoesophageal Fistula: An abnormal connection between the trachea and esophagus, leading to aspiration and feeding difficulties.
  • Tracheoinnominate Arterial Fistula: A rare but life-threatening complication where the trachea erodes into the innominate artery, resulting in severe hemorrhage.
  • Tracheal Stenosis: Narrowing of the trachea due to scar tissue formation, which can lead to breathing difficulties.
Suture Materials
General Surgery

Suture Materials

Sutures are essential in surgical procedures for wound closure and tissue approximation. Various types of sutures are available, each with unique properties, advantages, and applications. Below is a summary of some commonly used suture materials, including chromic catgut, polypropylene, polyglycolic acid, and polyamide (nylon).

1. Chromic Catgut

  • Description:

    • Chromic catgut is a natural absorbable suture made from collagen derived from the submucosa of sheep intestines or the serosa of beef cattle intestines. It is over 99% pure collagen.
  • Absorption Process:

    • The absorption of chromic catgut occurs through enzymatic digestion by proteolytic enzymes, which are derived from lysozymes contained within polymorphonuclear leukocytes (polymorphs) and macrophages.
  • Absorption Rate:

    • The absorption rate depends on the size of the suture and whether it is plain or chromicized. Typically, absorption is completed within 60-120 days.
  • Applications:

    • Commonly used in soft tissue approximation and ligation, particularly in areas where a temporary support is needed.

2. Polypropylene (Proline)

  • Description:

    • Polypropylene is a synthetic monofilament suture made from a purified and dyed polymer.
  • Properties:

    • It has an extremely high tensile strength, which it retains indefinitely after implantation. Polypropylene is non-biodegradable, meaning it does not break down in the body.
  • Applications:

    • Ideal for use in situations where long-term support is required, such as in vascular surgery, hernia repairs, and other procedures where permanent sutures are beneficial.

3. Polyglycolic Acid

  • Description:

    • Polyglycolic acid is a synthetic absorbable suture formed by linking glycolic acid monomers to create a polymer.
  • Properties:

    • It is known for its predictable absorption rate and is commonly used in various surgical applications.
  • Applications:

    • Frequently used in soft tissue approximation, including in gastrointestinal and gynecological surgeries, where absorbable sutures are preferred.

4. Polyamide (Nylon)

  • Description:

    • Polyamide, commonly known as nylon, is a synthetic non-absorbable suture that is chemically extruded and generally available in monofilament form.
  • Properties:

    • Nylon sutures have a low coefficient of friction, making passage through tissue easy. They also elicit minimal tissue reaction.
  • Applications:

    • Used in a variety of surgical procedures, including skin closure, where a strong, durable suture is required.
Ludwig's Angina
General Surgery

Ludwig's Angina

Ludwig's angina is a serious, potentially life-threatening cellulitis or connective tissue infection of the submandibular space. It typically arises from infections of the teeth, particularly the second or third molars, and can lead to airway obstruction due to swelling. This condition is named after the German physician Wilhelm Friedrich von Ludwig, who first described it in the 19th century.

Etiology

  • Common Causes:

    • Dental infections (especially from the lower molars)
    • Infections from the floor of the mouth
    • Trauma to the submandibular area
    • Occasionally, infections can arise from other sources, such as the oropharynx or skin.
  • Microbial Agents:

    • Mixed flora, including both aerobic and anaerobic bacteria.
    • Common organisms include Streptococcus, Staphylococcus, and Bacteroides species.

Pathophysiology

  • The infection typically begins in the submandibular space and can spread rapidly due to the loose connective tissue in this area.
  • The swelling can lead to displacement of the tongue and can obstruct the airway, making it a medical emergency.

Clinical Presentation

  • Symptoms:

    • Swelling of the submandibular area, which may be bilateral
    • "Brawny induration" (firm, non-fluctuant swelling)
    • Pain and tenderness in the submandibular region
    • Difficulty swallowing (dysphagia) and speaking (dysarthria)
    • Fever and malaise
    • Possible elevation of the floor of the mouth and displacement of the tongue
  • Signs:

    • Swelling may extend to the neck and may cause "bull neck" appearance.
    • Trismus (limited mouth opening) may be present.
    • Respiratory distress due to airway compromise.

Diagnosis

  • Clinical Evaluation: Diagnosis is primarily clinical based on history and physical examination.
  • Imaging:
    • CT scan of the neck may be used to assess the extent of the infection and to rule out other conditions.
    • X-rays may show air in the soft tissues if there is a necrotizing infection.

Management

Initial Management

  • Airway Management:
    • Ensure the airway is patent; this may require intubation or tracheostomy in severe cases.

Medical Treatment

  • Antibiotics:
    • Broad-spectrum intravenous antibiotics are initiated to cover both aerobic and anaerobic bacteria. Common regimens may include:
      • Ampicillin-sulbactam
      • Clindamycin
      • Metronidazole combined with a penicillin derivative

Surgical Intervention

  • Drainage:
    • Surgical drainage may be necessary if there is an abscess formation or significant swelling.
    • Incisions are typically made in the submandibular area to allow for drainage of pus and to relieve pressure.

Complications

  • Airway Obstruction: The most critical complication, requiring immediate intervention.
  • Sepsis: Can occur if the infection spreads systemically.
  • Necrotizing fasciitis: Rare but serious complication that may require extensive surgical intervention.
  • Thrombosis of the internal jugular vein: Can occur due to the spread of infection.

Prognosis

  • With prompt diagnosis and treatment, the prognosis is generally good. However, delays in management can lead to significant morbidity and mortality due to airway compromise and systemic infection.