📖 Physiology
Hormones of the Hypothalamus
PhysiologyThe hypothalamus is a region of the brain. It secretes a number of hormones.
- Thyrotropin-releasing hormone (TRH)
- Gonadotropin-releasing hormone (GnRH)
- Growth hormone-releasing hormone (GHRH)
- Corticotropin-releasing hormone (CRH)
- Somatostatin
- Dopamine
All of these are released into the blood, travel immediately to the anterior lobe of the pituitary, where they exert their effects.
Two other hypothalamic hormones:
- Antidiuretic hormone (ADH) and
- Oxytocin
travel in neurons to the posterior lobe of the pituitary where they are released into the circulation.
Membrane Structure & Function
PhysiologyMembrane Structure & Function
Cell Membranes
- Cell membranes are phospholipid bilayers (2 layers)
- Bilayer forms a barrier to passage of molecules in an out of cell
- Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
- Cholesterol (another lipid) stabilizes cell membranes
- the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water
Membranes Also Contain Proteins
- Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
- Hydrophobic = doesn't like water = likes lipids
- Membrane proteins have many functions:
- receptors for hormones
- pumps for transporting materials across the membrane
- ion channels
- adhesion molecules for holding cells to extracellular matrix
cell recognition antigens
Events in gastric function
PhysiologyEvents in gastric function:
1) Signals from vagus nerve begin gastric secretion in cephalic phase.
2) Physical contact by food triggers release of pepsinogen and H+ in gastric phase.
3) Muscle contraction churns and liquefies chyme and builds pressure toward pyloric sphincter.
4) Gastrin is released into the blood by cells in the pylorus. Gastrin reinforces the other stimuli and acts as a positive feedback mechanism for secretion and motility.
5) The intestinal phase begins when acid chyme enters the duodenum. First more gastrin secretion causes more acid secretion and motility in the stomach.
6) Low pH inhibits gastrin secretion and causes the release of enterogastrones such as GIP into the blood, and causes the enterogastric reflex. These events stop stomach emptying and allow time for digestion in the duodenum before gastrin release again stimulates the stomach.
Blood Groups
PhysiologyBlood Groups
Blood groups are created by molecules present on the surface of red blood cells (and often on other cells as well).
The ABO Blood Groups
The ABO blood groups are the most important in assuring safe blood transfusions.
|
Blood Group |
Antigens on RBCs |
Antibodies in Serum |
Genotypes |
|
A |
A |
Anti-B |
AA or AO |
|
B |
B |
Anti-A |
BB or BO |
|
AB |
A and B |
Neither |
AB |
|
O |
Neither |
Anti-A and anti-B |
OO |
When red blood cells carrying one or both antigens are exposed to the corresponding antibodies, they agglutinate; that is, clump together. People usually have antibodies against those red cell antigens that they lack.
The critical principle to be followed is that transfused blood must not contain red cells that the recipient's antibodies can clump. Although theoretically it is possible to transfuse group O blood into any recipient, the antibodies in the donated plasma can damage the recipient's red cells. Thus all transfusions should be done with exactly-matched blood.
The Rh System
Rh antigens are transmembrane proteins with loops exposed at the surface of red blood cells. They appear to be used for the transport of carbon dioxide and/or ammonia across the plasma membrane. They are named for the rhesus monkey in which they were first discovered.
There are a number of Rh antigens. Red cells that are "Rh positive" express the one designated D. About 15% of the population have no RhD antigens and thus are "Rh negative".
The major importance of the Rh system for human health is to avoid the danger of RhD incompatibility between mother and fetus.
During birth, there is often a leakage of the baby's red blood cells into the mother's circulation. If the baby is Rh positive (having inherited the trait from its father) and the mother Rh-negative, these red cells will cause her to develop antibodies against the RhD antigen. The antibodies, usually of the IgG class, do not cause any problems for that child, but can cross the placenta and attack the red cells of a subsequent Rh+ fetus. This destroys the red cells producing anemia and jaundice. The disease, called erythroblastosis fetalis or hemolytic disease of the newborn, may be so severe as to kill the fetus or even the newborn infant. It is an example of an antibody-mediated cytotoxicity disorder.
Although certain other red cell antigens (in addition to Rh) sometimes cause problems for a fetus, an ABO incompatibility does not. Rh incompatibility so dangerous when ABO incompatibility is not
It turns out that most anti-A or anti-B antibodies are of the IgM class and these do not cross the placenta. In fact, an Rh−/type O mother carrying an Rh+/type A, B, or AB fetus is resistant to sensitization to the Rh antigen. Presumably her anti-A and anti-B antibodies destroy any fetal cells that enter her blood before they can elicit anti-Rh antibodies in her.
This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or Rhogam. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.
Rh immune globulin came into common use in the United States in 1968, and within a decade the incidence of Rh hemolytic disease became very low.
