Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Anatomy

Muscles of the Tongue

  • The tongue is divided into halves by a medial fibrous lingual septum that lies deep to the medial groove.
  • In each half of the tongue there are four extrinsic and four intrinsic muscles.
  • The lingual muscles are all supplied by the hypoglossal nerve (CN XII).
  • The only exception is palatoglossus, which is supplied by the pharyngeal branch of the vagus nerve, via the pharyngeal plexus.

 

Extrinsic Muscles of the Tongue

The Genioglossus Muscle

  • This is a bulky, fan-shaped muscle that contributes to most of the bulk of the tongue.
  • It arises from a short tendon from the genial tubercle (mental spine) of the mandible.
  • It fans out as it enters the tongue inferiorly and its fibres attach to the entire dorsum of the tongue.
  • Its most inferior fibres insert into the body of the hyoid bone.
  • The genioglossus muscle depresses the tongue and its posterior part protrudes it.

 

The Hyoglossus Muscle

  • This is a thin, quadrilateral muscle.
  • It arises from the body and greater horn of the hyoid bone and passes superoanteriorly to insert into the side and inferior aspect of the tongue.
  • It depresses the tongue, pulling its sides inferiorly; it also aids in retrusion of the tongue.

 

The Styloglossus Muscle

  • This small, short muscle arises from the anterior border of the styloid process near its tip and from the stylohyoid ligament.
  • It passes inferoanteriorly to insert into the side and inferior aspect of the tongue.
  • The styloglossus retrudes the tongue and curls its sides to create a trough during swallowing. 

 

The Palatopharyngeus Muscle

  • Superior attachment: hard palate and palatine aponeurosis.
  • Inferior attachment: lateral wall of pharynx.
  • Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
  • This thin, flat muscle is covered with mucous membrane to form the palatopharyngeal arch.
  • It passes posteroinferiorly in this arch.
  • This muscle tenses the soft palate and pulls the walls of the pharynx superiorly, anteriorly and medially during swallowing. 

Intrinsic Muscles of the Tongue

The Superior Longitudinal Muscle of the Tongue

  • The muscle forms a thin layer deep to the mucous membrane on the dorsum of the tongue, running from its tip to its root.
  • It arises from the submucosal fibrous layer and the lingual septum and inserts mainly into the mucous membrane.
  • This muscle curls the tip and sides of the tongue superiorly, making the dorsum of the tongue concave.

 

The Inferior Longitudinal Muscle of the Tongue

  • This muscle consists of a narrow band close to the inferior surface of the tongue.
  • It extends from the tip to the root of the tongue.
  • Some of its fibres attach to the hyoid bone.
  • This muscle curls the tip of the tongue inferiorly, making the dorsum of the tongue convex.

The Transverse Muscle of the Tongue

  • This muscle lies deep to the superior longitudinal muscle.
  • It arises from the fibrous lingual septum and runs lateral to its right and left margins.
  • Its fibres are inserted into the submucosal fibrous tissue.
  • The transverse muscle narrows and increases the height of the tongue.

The Vertical Muscle of the Tongue

  • This muscle runs inferolaterally from the dorsum of the tongue.
  • It flattens and broadens the tongue.
  • Acting with the transverse muscle, it increases the length of the tongue.

The Nasal Mucosa

  • Mucosa lines the entire nasal cavities except for the vestibule of the nose.
  • The nasal mucosa is firmly bound to the periosteum and perichondrium of the supporting structures of the nose.
  • It is continuous with the adjoining cavities to which the nasal cavity communicates (e.g., the nasopharynx and paranasal sinuses).
  • The inferior 2/3 of the nasal mucosa is called the respiratory area and air passing over this is warmed and moistened before it passes into the lungs.
  • The superior 1/3 is called the olfactory area.

The Olfactory Area of Nasal Mucosa

  • This area contains the peripheral organ of smell.
  • Sniffing draws air into this area
  • Olfactory receptor cells (from the olfactory nerve, CN I, are located in the mucosa of this area in the nose.

Nerves to the Respiratory Area of Nasal Mucosa

  • The inferior 2/3 of the nasal mucosa are supplied chiefly by the trigeminal nerve (CN V).
  • The mucous membrane of the nasal septum is supplied chiefly by the nasopalatine nerve, a branch of the maxillary nerve (CN V2).
  • Its anterior portion is supplied by the anterior ethmoidal nerve (a branch of the nasociliary nerve) which is derived from the ophthalmic nerve (CN V1).
  • The lateral walls of the nasal cavity are supplied by branches of the maxillary nerve (CN V2); the greater palatine nerve, and the anterior ethmoidal nerve.

Arteries of the Nasal Mucosa

  • The blood supply of the mucosa of the nasal septum is derived mainly from the maxillary artery.
  • The sphenopalatine artery, a branch of the maxillary, supplies most of the blood of the nasal mucosa.
  • It enters by the sphenopalatine foramen and sends branches to the posterior regions of the lateral wall and to the nasal septum.
  • The greater palatine artery, also a branch of the maxillary, passes through the incisive foramen to supply the nasal septum.
  • The anterior and posterior ethmoidal arteries, branches of the ophthalmic artery, supply the anterosuperior part of the mucosa of the lateral wall of the nasal cavity and nasal septum.
  • Three branches of the facial artery (superior labial, ascending palatine, and lateral nasal) also supply the anterior parts of the nasal mucosa.

Veins of the Nasal Mucosa

  • The veins of the nasal mucosa form a venous network of plexus in the connective tissue of the nasal mucosa.
  • Some of the veins open into the sphenopalatine vein and drain to the pterygoid plexus.
  • Others join the facial and infraorbital veins.
  • Some empty into the ophthalmic veins and drain into the cavernous sinus.

Nerves of the Palate

  • The sensory nerves of the palate, which are branches of the pterygopalatine ganglion, are the greater and lesser palatine nerves.
  • They accompany the arteries through the greater and lesser palatine foramina, respectively.
  • The greater palatine nerve supplies the gingivae, mucous membrane, and glands of the hard palate.
  • The lesser palatine nerve supplies the soft palate.
  • Another branch of the pterygopalatine ganglion, the nasopalatine nerve, emerges from the incisive foramen and supplies the mucous membrane of the anterior part of the hard palate.

Classification

Epitheliums can be classified on appearance or on function

Classification based on appearance

- Simple - one layer of cells

- Pseudostratified - looks like more than one layer but is not

- Stratified - more than one layer of cells

Simple epitheliums

Simple squamous epithelium

 Cells are flat with bulging or flat nuclei.  Lines the insides of lung alveoli and certain ducts in the kidney

 Forms serous membranes called mesothelium that line cavities like: pericardial ,  peritoneal,  plural

 Lines blood vessels - known as endothelium

Simple cuboidal epithelium

It appears square in cross section,  Found in: - Ducts of salivary glands,  Follicles of the thyroid gland,  Pigment layer in the eye,  Collecting ducts of the kidney, In the middle ear is ciliated type.

Simple columnar

  • Lines the gastrointestinal tract from the stomach to the anal canal,  Some columnar cells have a  secretory function – stomach, peg cells in the oviduct,  Some columnar cells have microvilli on their free border (striated border) – gall bladder, duodenum
  • Microvilli increase the surface area for absorption
  • Some columnar cells have cilia – oviduct, smaller bronchi
  • Cilia transport particles

Pseudostratified

Appears as stratified epithelium but all cells are in contact with the basement membrane.  Has a thick basement membrane. Different cell types make up this epithelium,  Cells that can be found in this type of epithelium are:

  • Columnar cells with cilia or microvilli.
  • Basal cells that do not reach the surface.
  • Goblet cells that secrete mucous.
  • Found in the trachea, epididymus, ductus deferens and female urethra

Stratified epithelium

Classified according to the shape of the surface cells

Stratified squamous epithelium

Has a basal layer that varies from cuboidal to columnar cells that divide to form new cells. Two types are found:

Keratinized:  Mostly forms a dry covering, The middle layers consists of cells that are forming- and filling up with keratin. The superficial cells form a tough non living layer of keratin,  Keratin is a type of protein,  The skin is of this type has  thick skin - found on the hand palms and soles of the feet,  thin skin - found on the rest of the body

Non-keratinized:  Top layer of cells are living cells with nuclei  Forms a wet covering,  The middle layers are polyhedral,  The surface layer consists of flat squamous cells

  • Is found in:  mouth,  oesophagus,  vagina

Stratified cuboidal epithelium

Found: - in the ducts of sweat glands

Stratified columnar epithelium

Found at the back of the eyelid (conjunctiva)

Transitional epithelium

- Sometimes the surface cells are squamous, sometimes cuboidal and sometimes columnar

- The superficial cells are called umbrella cells because they can open and close like umbrellas, when the epithelium stretch and shrink

- Umbrella cells can have 2 nuclei

- Found in the bladder and ureter

Muscles of the Soft Palate

The Levator Veli Palatini (Levator Palati)

  • Superior attachment: cartilage of the auditory tube and petrous part of temporal bone.
  • Inferior attachment: palatine aponeurosis.
  • Innervation: pharyngeal branch of vagus via pharyngeal plexus.
  • This cylindrical muscle runs inferoanteriorly, spreading out in the soft palate, where it attaches to the superior surface of the palatine aponeurosis.
  • It elevates the soft palate, drawing it superiorly and posteriorly.
  • It also opens the auditory tube to equalise air pressure in the middle ear and pharynx.

 

The Tensor Veli Palatini (Tensor Palati)

  • Superior attachment: scaphoid fossa of medial pterygoid plate, spine of sphenoid bone, and cartilage of auditory tube.
  • Inferior attachment: palatine aponeurosis.
  • Innervation: medial pterygoid nerve (a branch of the mandibular nerve).
  • This thin, triangular muscle passes inferiorly, and hooks around the hamulus of the medial pterygoid plate.
  • It then inserts into the palatine aponeurosis.
  • This muscle tenses the soft palate by using the hamulus as a pulley.
  • It also pulls the membranous portion of the auditory tube open to equalise air pressure of the middle ear and pharynx.

 

The Palatoglossus Muscle

  • Superior attachment: palatine aponeurosis.
  • Inferior attachment: side of tongue.
  • Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
  • This muscle, covered by mucous membrane, forms the palatoglossal arch.
  • The palatoglossus elevates the posterior part of the tongue and draws the soft palate inferiorly onto the tongue.

 

  • Superior attachment: hard palatThe Palatopharyngeus Musclee and palatine aponeurosis.
  • Inferior attachment: lateral wall of pharynx.
  • Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
  • This thin, flat muscle is covered with mucous membrane to form the palatopharyngeal arch.
  • It passes posteroinferiorly in this arch.
  • This muscle tenses the soft palate and pulls the walls of the pharynx superiorly, anteriorly and medially during swallowing.

 

The Musculus Uvulae

  • Superior attachment: posterior nasal spine and palatine aponeurosis.
  • Inferior attachment: mucosa of uvula.
  • Innervation: cranial part of accessory through the pharyngeal branch of vagus, via the pharyngeal plexus.
  • It passes posteriorly on each side of the median plane and inserts into the mucosa of the uvula.
  • When the muscle contracts, it shortens the uvula and pulls it superiorly.

Sternum

o    Forms the medial part of the anterior chest wall
o    Manubrium (upper part)-clavicle and first rib articulate with the manubrium .
o    Body (middle blade)-second and tenth ribs articulate with the body via the costal cartilages
o    Xiphoid (blunt cartilaginous tip)

Ribs (12 pairs)

o    Each rib articulates with both the body and the transverse process of its corresponding
o    thoracic vertebra
o    The second to ninth ribs articulate with the body of the vertebra above'
o    Ribs curve outward, forward, and then downward
o    Anteriorly, each of the first seven ribs joins a costal cartilage that attaches to the sternum
o    Next three ribs (eighth to tenth) join the cartilage of the rib above
o    Eleventh and twelfth ribs do not attach to the sternum; are called "floating ribs"

 

Muscles Moving the Auditory Ossicles

The Tensor Tympani Muscle

  • This muscle is about 2 cm long.
  • Origin: superior surface of the cartilaginous part of the auditory tube, the greater wing of the sphenoid bone, and the petrous part of the temporal bone.
  • Insertion: handle of the malleus.
  • Innervation: mandibular nerve (CN V3) through the nerve to medial pterygoid.
  • The tensor tympani muscle pulls the handle of the malleus medially, tensing the tympanic membrane, and reducing the amplitude of its oscillations.
  • This tends to prevent damage to the internal ear when one is exposed to load sounds.

 

The Stapedius Muscle

  • This tiny muscle is in the pyramidal eminence or the pyramid.
  • Origin: pyramidal eminence on the posterior wall of the tympanic cavity. Its tendon enters the tympanic cavity by traversing a pinpoint foramen in the apex of the pyramid.
  • Insertion: neck of the stapes.
  • Innervation: nerve to the stapedius muscle, which arises from the facial nerve (CN VII).
  • The stapedius muscle pulls the stapes posteriorly and tilts its base in the fenestra vestibuli or oval window, thereby tightening the anular ligament and reducing the oscillatory range.
  • It also prevents excessive movement of the stapes.

Explore by Exams