NEET MDS Lessons
Biochemistry
Step 1. Acyl-CoA Dehydrogenase catalyzes oxidation of the fatty acid moiety of acyl-CoA, to produce a double bond between carbon atoms 2 and 3.
There are different Acyl-CoA Dehydrogenases for short (4-6 C), medium (6-10 C), long and very long (12-18 C) chain fatty acids. Very Long Chain Acyl-CoA Dehydrogenase is bound to the inner mitochondrial membrane. The others are soluble enzymes located in the mitochondrial matrix.
FAD is the prosthetic group that functions as electron acceptor for Acyl-CoA Dehydrogenase.
A glutamate side-chain carboxyl extracts a proton from the a-carbon of the substrate, facilitating transfer of 2 e- with H+ (a hydride) from the b position to FAD. The reduced FAD accepts a second H+, yielding FADH2
The carbonyl oxygen of the thioester substrate is hydrogen bonded to the 2'-OH of the ribityl moiety of FAD, giving this part of FAD a role in positioning the substrate and increasing acidity of the substrate a-proton
The reactive glutamate and FAD are on opposite sides of the substrate at the active site. Thus the reaction is stereospecific, yielding a trans double bond in enoyl-CoA.
FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 electrons to an Electron Transfer Flavoprotein (ETF), which in turn passes the electrons to coenzyme Q of the respiratory chain.
Step 2. Enoyl-CoA Hydratase catalyzes stereospecific hydration of the trans double bond produced in the 1st step of the pathway, yielding L-hydroxyacyl-Coenzyme A
Step 3. Hydroxyacyl-CoA Dehydrogenase catalyzes oxidation of the hydroxyl in the b position (C3) to a ketone. NAD+ is the electron acceptor.
Step 4. b-Ketothiolase (b-Ketoacyl-CoA Thiolase) catalyzes thiolytic cleavage.
A cysteine S attacks the b-keto C. Acetyl-CoA is released, leaving the fatty acyl moiety in thioester linkage to the cysteine thiol. The thiol of HSCoA displaces the cysteine thiol, yielding fatty acyl-CoA (2 C shorter).
A membrane-bound trifunctional protein complex with two subunit types expresses the enzyme activities for steps 2-4 of the b-oxidation pathway for long chain fatty acids. Equivalent enzymes for shorter chain fatty acids are soluble proteins of the mitochondrial matrix.
Summary of one round of the b-oxidation pathway:
fatty acyl-CoA + FAD + NAD+ + HS-CoA →
fatty acyl-CoA (2 C shorter) + FADH2 + NADH + H+ + acetyl-CoA
The b-oxidation pathway is cyclic. The product, 2 carbons shorter, is the input to another round of the pathway. If, as is usually the case, the fatty acid contains an even number of C atoms, in the final reaction cycle butyryl-CoA is converted to 2 copies of acetyl-CoA
ATP production:
- FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 e- via ETF to coenzyme Q of the respiratory chain. H+ ejection from the mitochondrial matrix that accompanies transfer of 2 e- from CoQ to oxygen, leads via chemiosmotic coupling to production of approximately 1.5 ATP. (Approx. 4 H+ enter the mitochondrial matrix per ATP synthesized.)
- NADH is reoxidized by transfer of 2 e- to the respiratory chain complex I. Transfer of 2 e- from complex I to oxygen yields approximately 2.5 ATP.
- Acetyl-CoA can enter Krebs cycle, where the acetate is oxidized to CO2, yielding additional NADH, FADH2, and ATP.
- Fatty acid oxidation is a major source of cellular ATP
b-Oxidation of very long chain fatty acids also occurs within peroxisomes
FAD is electron acceptor for peroxisomal Acyl-CoA Oxidase, which catalyzes the first oxidative step of the pathway. The resulting FADH2 is reoxidized in the peroxisome producing hydrogen peroxide FADH2 + O2 à FAD + H2O2
The peroxisomal enzyme Catalase degrades H2O2 by the reaction:
2 H2O2 → 2 H2O + O2
These reactions produce no ATP
Once fatty acids are reduced in length within the peroxisomes they may shift to the mitochondria to be catabolized all the way to CO2. Carnitine is also involved in transfer of fatty acids into and out of peroxisomes
Enzyme Kinetics
Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. They achieve their effect by temporarily binding to the substrate and, in doing so, lowering the activation energy needed to convert it to a product.
The rate at which an enzyme works is influenced by several factors, e.g.,
- the concentration of substrate molecules (the more of them available, the quicker the enzyme molecules collide and bind with them). The concentration of substrate is designated [S] and is expressed in unit of molarity.
- the temperature. As the temperature rises, molecular motion - and hence collisions between enzyme and substrate - speed up. But as enzymes are proteins, there is an upper limit beyond which the enzyme becomes denatured and ineffective.
- the presence of inhibitors.
- competitive inhibitors are molecules that bind to the same site as the substrate - preventing the substrate from binding as they do so - but are not changed by the enzyme.
- noncompetitive inhibitors are molecules that bind to some other site on the enzyme reducing its catalytic power.
- pH. The conformation of a protein is influenced by pH and as enzyme activity is crucially dependent on its conformation, its activity is likewise affected.
The study of the rate at which an enzyme works is called enzyme kinetics.
Glycogenolysis
Breakdown of glycogen to glucose is called glycogenolysis. The Breakdown of glycogen takes place in liver and muscle. In Liver , the end product of glycodgen breakdown is glucose where as in muscles the end product is Lactic acid Under the combined action of Phosphorylase (breaks only –α-(1,4) linkage )and Debranching enzymes (breaks only α-(1,6) linkage )glycogen is broken down to glucose.
Functions of lipids
1. They are the concentrated fuel reserve of the body (triacylglycerols).
2. Lipids are the constituents of membrane structure and regulate the membrane permeability (phospholipids and cholesterol).
3. They serve as a source of fat soluble vitamins (A, D, E and K).
4. Lipids are important as cellular metabolic regulators (steroid hormones and prostaglandins).
5. Lipids protect the internal organs, serve as insulating materials and give shape and smooth appearance to the body.
Niacin: Vitamin B3, Nicotinamide, Nicotinic Acid Niacin, or vitamin B3,
is involved in energy production, normal enzyme function, digestion, promoting normal appetite, healthy skin, and nerves.
RDA Males: 16 mg/day; Females: 14 mg/day
Niacin Deficiency : Pellagra is the disease state that occurs as a result of severe niacin deficiency. Symptoms include cramps, nausea, mental confusion, and skin problems.
- There are two important phospholipids, Phosphatidylcholine and Phosphatidylserine found the cell membrane without which cell cannot function normally.
- Phospholipids are also important for optimal brain health as they found the cell membrane of brain cells also which help them to communicate and influence the receptors function. That is the reason food stuff which is rich in phospholipids like soy, eggs and the brain tissue of animals are good for healthy and smart brain.
- Phospholipids are the main component of cell membrane or plasma membrane. The bilayer of phospholipid molecules determine the transition of minerals, nutrients, and drugs in and out of the cell and affect various functions of them.
- As phospholipids are main component of all cell membrane, they influence a number of organs and tissues, such as the heart, blood cells and the immune system. As we grown up the amount of phospholipids decreases and reaches to decline.
- Phospholipids present in cell membrane provide cell permeability and flexibility with various substances as well its ability to move fluently. The arrangement of phospholipid molecules in lipid bilayer prevent amino acids, carbohydrates, nucleic acids, and proteins from moving across the membrane by diffusion. The lipid bi-layer is usually help to prevent adjacent molecules from sticking to each other.
- The selectivity of cell membrane form certain substances are due to the presence of hydrophobic and hydrophilic part molecules and their arrangement in bilayer. This bilayer is also maintained the normal pH of cell to keeps it functioning properly.
- Phospholipids are also useful in the treatment of memory problem associated with chronic substances as they improve the ability of organism to adapt the chronic stress.
Ampholytes, Polyampholytes, pI and Zwitterion
Many substances in nature contain both acidic and basic groups as well as many different types of these groups in the same molecule. (e.g. proteins). These are called ampholytes (one acidic and one basic group) or polyampholytes (many acidic and basic groups). Proteins contains many different amino acids some of which contain ionizable side groups, both acidic and basic. Therefore, a useful term for dealing with the titration of ampholytes and polyampholytes (e.g. proteins) is the isoelectric point, pI. This is described as the pH at which the effective net charge on a molecule is zero.
For the case of a simple ampholyte like the amino acid glycine the pI, when calculated from the Henderson-Hasselbalch equation, is shown to be the average of the pK for the a-COOH group and the pK for the a-NH2 group:
pI = [pKa-(COOH) + pKa-(NH3+)]/2
For more complex molecules such as polyampholytes the pI is the average of the pKa values that represent the boundaries of the zwitterionic form of the molecule. The pI value, like that of pK, is very informative as to the nature of different molecules. A molecule with a low pI would contain a predominance of acidic groups, whereas a high pI indicates predominance of basic groups.