Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Orthodontics

Retention

Definition: Retention refers to the phase following active orthodontic treatment where appliances are used to maintain the corrected positions of the teeth. The goal of retention is to prevent relapse and ensure that the teeth remain in their new, desired positions.

Types of Retainers

  1. Fixed Retainers:

    • Description: These are bonded to the lingual surfaces of the teeth, typically the anterior teeth, to maintain their positions.
    • Advantages: They provide continuous retention without requiring patient compliance.
    • Disadvantages: They can make oral hygiene more challenging and may require periodic replacement.
  2. Removable Retainers:

    • Description: These are appliances that can be taken out by the patient. Common types include:
      • Hawley Retainer: A custom-made acrylic plate with a wire framework that holds the teeth in position.
      • Essix Retainer: A clear, plastic retainer that fits over the teeth, providing a more aesthetic option.
    • Advantages: Easier to clean and can be removed for eating and oral hygiene.
    • Disadvantages: Their effectiveness relies on patient compliance; if not worn as prescribed, relapse may occur.

Duration of Retention

  • The duration of retention varies based on individual cases, but it is generally recommended to wear retainers full-time for a period (often several months to a year) and then transition to nighttime wear for an extended period (often several years).
  • Long-term retention may be necessary for some patients, especially those with a history of dental movement or specific malocclusions.

Nail Biting Habits

Nail biting, also known as onychophagia, is one of the most common habits observed in children and can persist into adulthood. It is often associated with internal tension, anxiety, or stress. Understanding the etiology, clinical features, and management strategies for nail biting is essential for addressing this habit effectively.

Etiology

  1. Emotional Problems:

    • Persistent nail biting may indicate underlying emotional issues, such as anxiety, stress, or tension. It can serve as a coping mechanism for dealing with these feelings.
  2. Psychosomatic Factors:

    • Nail biting can be a psychosomatic response to stress or emotional discomfort, manifesting physically as a way to relieve tension.
  3. Successor of Thumb Sucking:

    • For some children, nail biting may develop as a successor to thumb sucking, particularly as they transition from one habit to another.

Clinical Features

  • Dental Effects:

    • Crowding: Nail biting can contribute to dental crowding, particularly if the habit leads to changes in the position of the teeth.
    • Rotation: Teeth may become rotated or misaligned due to the pressure exerted during nail biting.
    • Alteration of Incisal Edges: The incisal edges of the anterior teeth may become worn down or altered due to repeated contact with the nails.
  • Soft Tissue Changes:

    • Inflammation of Nail Bed: Chronic nail biting can lead to inflammation and infection of the nail bed, resulting in redness, swelling, and discomfort.

Management

  1. Awareness:

    • The first step in management is to make the patient aware of their nail biting habit. Understanding the habit's impact on their health and appearance can motivate change.
  2. Addressing Emotional Factors:

    • It is important to identify and treat any underlying emotional issues contributing to the habit. This may involve counseling or therapy to help the individual cope with stress and anxiety.
  3. Encouraging Outdoor Activities:

    • Engaging in outdoor activities and physical exercise can help reduce tension and provide a positive outlet for stress, potentially decreasing the urge to bite nails.
  4. Behavioral Modifications:

    • Nail Polish: Applying a bitter-tasting nail polish can deter nail biting by making the nails unpalatable.
    • Light Cotton Mittens: Wearing mittens or gloves can serve as a physical reminder to avoid nail biting and can help break the habit.
  5. Positive Reinforcement:

    • Encouraging and rewarding the individual for not biting their nails can help reinforce positive behavior and motivate them to stop.

Types of Springs

In orthodontics, various types of springs are utilized to achieve specific tooth movements. Each type of spring has unique characteristics and applications. Below are a few examples of commonly used springs in orthodontic appliances:

1. Finger Spring

  • Construction: Made from 0.5 mm stainless steel wire.
  • Components:
    • Helix: 2 mm in diameter.
    • Active Arm: The part that exerts force on the tooth.
    • Retentive Arm: Helps retain the appliance in place.
  • Placement: The helix is positioned opposite to the direction of the intended tooth movement and should be aligned along the long axis of the tooth, perpendicular to the direction of movement.
  • Indication: Primarily used for mesio-distal movement of teeth, such as closing anterior diastemas.
  • Activation: Achieved by opening the coil or moving the active arm towards the tooth to be moved by 2-3 mm.

2. Z-Spring (Double Cantilever)

  • Construction: Comprises two helices of small diameter, suitable for one or more incisors.
  • Positioning: The spring is positioned perpendicular to the palatal surface of the tooth, with a long retentive arm.
  • Preparation: The Z-spring needs to be boxed in wax prior to acrylization.
  • Indication: Used to move one or more teeth in the same direction, such as proclining two or more upper incisors to correct anterior tooth crossbites. It can also correct mild rotation if only one helix is activated.
  • Activation: Achieved by opening both helices up to 2 mm at a time.

3. Cranked Single Cantilever Spring

  • Construction: Made from 0.5 mm wire.
  • Design: The spring consists of a coil located close to its emergence from the base plate. It is cranked to keep it clear of adjacent teeth.
  • Indication: Primarily used to move teeth labially.

4. T Spring

  • Construction: Made from 0.5 mm wire.
  • Design: The spring consists of a T-shaped arm, with the arms embedded in acrylic.
  • Indication: Used for buccal movement of premolars and some canines.
  • Activation: Achieved by pulling the free end of the spring toward the intended direction of tooth movement.

5. Coffin Spring

  • Construction: Made from 1.2 mm wire.
  • Design: Consists of a U or omega-shaped wire placed in the midpalatal region, with a retentive arm incorporated into the base plates.
  • Retention: Retained by Adams clasps on molars.
  • Indication: Used for slow dentoalveolar arch expansion in patients with upper arch constriction or in cases of unilateral crossbite.

Quad helix appliance is an orthodontic device used to expand the upper arch of teeth. It is typically cemented to the molars and features a U-shaped stainless steel wire with active helix springs, helping to correct issues like crossbites, narrow jaws, and crowded teeth. ### Components of the Quad Helix Appliance

  • Helix Springs:

    • The appliance contains two or four active helix springs that exert gentle pressure to widen the dental arch.
  • Bands:

    • It is attached to the molars using bands, which provide a stable anchor for the appliance.
  • Wire Framework:

    • Made from 38 mil stainless steel wire, the framework allows for customization and adjustment by the orthodontist.

Functions of the Quad Helix Appliance

  • Arch Expansion:

    • The primary function is to gradually widen the upper arch, creating more space for crowded teeth.
  • Correction of Crossbites:

    • It helps in correcting posterior crossbites, where the lower teeth are positioned outside the upper teeth.
  • Molar Stabilization:

    • The appliance stabilizes the molars in their correct position during treatment.

Indications for Use

  • Narrow Upper Jaw:

    • Ideal for patients with a constricted upper arch.
  • Crowded Teeth:

    • Used when there is insufficient space for teeth to align properly.
  • Class II and Class III Cases:

    • Effective in treating specific malocclusions that require arch expansion.

Advantages of the Quad Helix Appliance

  1. Non-Invasive:

    • It is a non-surgical option for expanding the dental arch.
  2. Fixed Design:

    • As a fixed appliance, it does not rely on patient compliance for activation.
  3. Customizable:

    • The design allows for adjustments to meet individual patient needs.

Limitations of the Quad Helix Appliance

  1. Initial Discomfort:

    • Patients may experience mild discomfort or pressure during the first few weeks of use.
  2. Oral Hygiene Challenges:

    • Maintaining oral hygiene can be more difficult, requiring diligent cleaning around the appliance.
  3. Adjustment Period:

    • It may take time for patients to adapt to speaking and swallowing with the appliance in place.

Factors to Consider in Designing a Spring for Orthodontic Appliances

In orthodontics, the design of springs is critical for achieving effective tooth movement while ensuring patient comfort. Several factors must be considered when designing a spring to optimize its performance and functionality. Below, we will discuss these factors in detail.

1. Diameter of Wire

  • Flexibility: The diameter of the wire used in the spring significantly influences its flexibility. A thinner wire will yield a more flexible spring, allowing for greater movement and adaptability.
  • Force Delivery: The relationship between wire diameter and force delivery is crucial. A thicker wire will produce a stiffer spring, which may be necessary for certain applications but can limit flexibility.

2. Force Delivered by the Spring

  • Formula: The force (F) delivered by a spring can be expressed by the formula:  [ $$F \propto \frac{d^4}{l^3} $$] Where:

    • ( F ) = force applied by the spring
    • ( d ) = diameter of the wire
    • ( l ) = length of the wire
  • Implications: This formula indicates that the force exerted by the spring is directly proportional to the fourth power of the diameter of the wire and inversely proportional to the cube of the length of the wire. Therefore, small changes in wire diameter can lead to significant changes in force delivery.

3. Length of Wire

  • Flexibility and Force: Increasing the length of the wire decreases the force exerted by the spring. Longer springs are generally more flexible and can remain active for extended periods.
  • Force Reduction: By doubling the length of the wire, the force can be reduced by a factor of eight. This principle is essential when designing springs for specific tooth movements that require gentler forces.

4. Patient Comfort

  • Design Considerations: The design, shape, size, and force generation of the spring must prioritize patient comfort. A well-designed spring should not cause discomfort or irritation to the oral tissues.
  • Customization: Springs may need to be customized to fit the individual patient's anatomy and treatment needs, ensuring that they are comfortable during use.

5. Direction of Tooth Movement

  • Point of Contact: The direction of tooth movement is determined by the point of contact between the spring and the tooth. Proper placement of the spring is essential for achieving the desired movement.
  • Placement Considerations:
    • Palatally Placed Springs: These are used for labial (toward the lips) and mesio-distal (toward the midline) tooth movements.
    • Buccally Placed Springs: These are employed when the tooth needs to be moved palatally and in a mesio-distal direction.

Ashley Howe’s Analysis of Tooth Crowding

Introduction

Today, we will discuss Ashley Howe’s analysis, which provides valuable insights into the causes of tooth crowding and the relationship between dental arch dimensions and tooth size. Howe’s work emphasizes the importance of arch width over arch length in understanding dental crowding.

Key Concepts

Tooth Crowding

  • Definition: Tooth crowding refers to the lack of space in the dental arch for all teeth to fit properly.
  • Howe’s Perspective: Howe posited that tooth crowding is primarily due to a deficiency in arch width rather than arch length.

Relationship Between Tooth Size and Arch Width

  • Howe identified a significant relationship between the total mesiodistal diameter of teeth anterior to the second permanent molar and the width of the dental arch in the first premolar region. This relationship is crucial for understanding how tooth size can impact arch dimensions and overall dental alignment.

Procedure for Analysis

To conduct Ashley Howe’s analysis, the following measurements must be obtained:

  1. Percentage of PMD to TTM
    PMD X 100
          TTM
  2. Percentage of PMBAW to TTM
    PMBAW X 100
        TTM
  3. Percentage of BAL to TTM: [ \text{Percentage of BAL} = \left( \frac{\text{BAL}}{\text{TTM}} \right) \times 100 ]

Where:

  • PMD = Total mesiodistal diameter of teeth anterior to the second permanent molar.
  • PMBAW = Premolar basal arch width.
  • BAL = Basal arch length.
  • TTM = Total tooth mesiodistal measurement.

Inferences from the Analysis

The results of the measurements can lead to several important inferences regarding treatment options for tooth crowding:

  1. If PMBAW > PMD:

    • This indicates that the basal arch is sufficient to allow for the expansion of the premolars. In this case, expansion may be a viable treatment option.
  2. If PMD > PMBAW:

    • This scenario can lead to three possible treatment options:
      1. Contraindicated for Expansion: Expansion may not be advisable.
      2. Move Teeth Distally: Consideration for distal movement of teeth to create space.
      3. Extract Some Teeth: Extraction may be necessary to alleviate crowding.
  3. If PMBAW X 100 / TTM:

    • Less than 37%: Extraction is likely required.
    • 44%: This is considered an ideal case where extraction is not necessary.
    • Between 37% and 44%: This is a borderline case where extraction may or may not be required, necessitating further evaluation.

Myofunctional Appliances

  • Myofunctional appliances are removable or fixed devices that aim to correct dental and skeletal discrepancies by promoting proper oral and facial muscle function. They are based on the principles of myofunctional therapy, which focuses on the relationship between muscle function and dental alignment.
  1. Mechanism of Action:

    • These appliances work by encouraging the correct positioning of the tongue, lips, and cheeks, which can help guide the growth of the jaws and the alignment of the teeth. They can also help in retraining oral muscle habits that may contribute to malocclusion, such as thumb sucking or mouth breathing.

Types of Myofunctional Appliances

  1. Functional Appliances:

    • Bionator: A removable appliance that encourages forward positioning of the mandible and helps in correcting Class II malocclusions.
    • Frankel Appliance: A removable appliance that modifies the position of the dental arches and improves facial aesthetics by influencing muscle function.
    • Activator: A functional appliance that promotes mandibular growth and corrects dental relationships by positioning the mandible forward.
  2. Tongue Retainers:

    • Devices designed to maintain the tongue in a specific position, often used to correct tongue thrusting habits that can lead to malocclusion.
  3. Mouthguards:

    • While primarily used for protection during sports, certain types of mouthguards can also be designed to promote proper tongue posture and prevent harmful oral habits.
  4. Myobrace:

    • A specific type of myofunctional appliance that is used to correct dental alignment and improve oral function by encouraging proper tongue posture and lip closure.

Indications for Use

  • Malocclusions: Myofunctional appliances are often indicated for treating Class II and Class III malocclusions, as well as other dental alignment issues.
  • Oral Habits: They can help in correcting harmful oral habits such as thumb sucking, tongue thrusting, and mouth breathing.
  • Facial Growth Modification: These appliances can be used to influence the growth of the jaws in growing children, promoting a more favorable dental and facial relationship.
  • Improving Oral Function: They can enhance functions such as chewing, swallowing, and speech by promoting proper muscle coordination.

Advantages of Myofunctional Appliances

  1. Non-Invasive: Myofunctional appliances are generally non-invasive and can be a more comfortable option for patients compared to fixed appliances.
  2. Promotes Natural Growth: They can guide the natural growth of the jaws and teeth, making them particularly effective in growing children.
  3. Improves Oral Function: By retraining oral muscle function, these appliances can enhance overall oral health and function.
  4. Aesthetic Appeal: Many myofunctional appliances are less noticeable than traditional braces, which can be more appealing to patients.

Limitations of Myofunctional Appliances

  1. Compliance Dependent: The effectiveness of myofunctional appliances relies heavily on patient compliance. Patients must wear the appliance as prescribed for optimal results.
  2. Limited Scope: While effective for certain types of malocclusions, myofunctional appliances may not be suitable for all cases, particularly those requiring significant tooth movement or surgical intervention.
  3. Adjustment Period: Patients may experience discomfort or difficulty adjusting to the appliance initially, which can affect compliance.

Explore by Exams