NEET MDS Lessons
Conservative Dentistry
Bases in Restorative Dentistry
Bases are an essential component in restorative dentistry, serving as a thicker layer of material placed beneath restorations to provide additional protection and support to the dental pulp and surrounding structures. Below is an overview of the characteristics, objectives, and types of bases used in dental practice.
1. Characteristics of Bases
A. Thickness
- Typical Thickness: Bases are generally thicker than liners, typically ranging from 1 to 2 mm. Some bases may be around 0.5 to 0.75 mm thick.
B. Functions
- Thermal Protection: Bases provide thermal insulation to protect the pulp from temperature changes that can occur during and after the placement of restorations.
- Mechanical Support: They offer supplemental mechanical support for the restoration by distributing stress on the underlying dentin surface. This is particularly important during procedures such as amalgam condensation, where forces can be applied to the restoration.
2. Objectives of Using Bases
The choice of base material and its application depend on the Remaining Dentin Thickness (RDT), which is a critical factor in determining the need for a base:
- RDT > 2 mm: No base is required, as there is sufficient dentin to protect the pulp.
- RDT 0.5 - 2 mm: A base is indicated, and the choice of material depends on the restorative material being used.
- RDT < 0.5 mm: Calcium hydroxide (Ca(OH)₂) or Mineral Trioxide Aggregate (MTA) should be used to promote the formation of reparative dentin, as the remaining dentin is insufficient to provide adequate protection.
3. Types of Bases
A. Common Base Materials
- Zinc Phosphate (ZnPO₄): Known for its good mechanical properties and thermal insulation.
- Glass Ionomer Cement (GIC): Provides thermal protection and releases fluoride, which can help in preventing caries.
- Zinc Polycarboxylate: Offers good adhesion to tooth structure and provides thermal insulation.
B. Properties
- Mechanical Protection: Bases distribute stress effectively, reducing the risk of fracture in the restoration and protecting the underlying dentin.
- Thermal Insulation: Bases are poor conductors of heat and cold, helping to maintain a stable temperature at the pulp level.
Window of Infectivity
The concept of the "window of infectivity" was introduced by Caufield in 1993 to describe critical periods in early childhood when the oral cavity is particularly susceptible to colonization by Streptococcus mutans, a key bacterium associated with dental caries. Understanding these windows is essential for implementing preventive measures against caries in children.
- Window of Infectivity: This term refers to specific time periods during which the acquisition of Streptococcus mutans occurs, leading to an increased risk of dental caries. These windows are characterized by the eruption of teeth, which creates opportunities for bacterial colonization.
First Window of Infectivity
A. Timing
- Age Range: The first window of infectivity is observed between 19 to 23 months of age, coinciding with the eruption of primary teeth.
B. Mechanism
- Eruption of Primary Teeth: As primary teeth erupt, they
provide a "virgin habitat" for S. mutans to colonize the oral
cavity. This is significant because:
- Reduced Competition: The newly erupted teeth have not yet been colonized by other indigenous bacteria, allowing S. mutans to establish itself without competition.
- Increased Risk of Caries: The presence of S. mutans in the oral cavity during this period can lead to an increased risk of developing dental caries, especially if dietary habits include frequent sugar consumption.
Second Window of Infectivity
A. Timing
- Age Range: The second window of infectivity occurs between 6 to 12 years of age, coinciding with the eruption of permanent teeth.
B. Mechanism
- Eruption of Permanent Dentition: As permanent teeth
emerge, they again provide opportunities for S. mutans to colonize
the oral cavity. This window is characterized by:
- Increased Susceptibility: The transition from primary to permanent dentition can lead to changes in oral flora and an increased risk of caries if preventive measures are not taken.
- Behavioral Factors: During this age range, children may have increased exposure to sugary foods and beverages, further enhancing the risk of S. mutans colonization and subsequent caries development.
4. Clinical Implications
A. Preventive Strategies
- Oral Hygiene Education: Parents and caregivers should be educated about the importance of maintaining good oral hygiene practices from an early age, especially during the windows of infectivity.
- Dietary Counseling: Limiting sugary snacks and beverages during these critical periods can help reduce the risk of S. mutans colonization and caries development.
- Regular Dental Visits: Early and regular dental check-ups can help monitor the oral health of children and provide timely interventions if necessary.
B. Targeted Interventions
- Fluoride Treatments: Application of fluoride varnishes or gels during these windows can help strengthen enamel and reduce the risk of caries.
- Sealants: Dental sealants can be applied to newly erupted permanent molars to provide a protective barrier against caries.
Tooth Deformation Under Load
Biomechanical Properties of Teeth
- Deformation (Strain): Teeth are not rigid structures; they undergo deformation (strain) during normal loading. This deformation is a natural response to the forces applied during chewing and other functional activities.
- Intraoral Loads: The loads experienced by teeth can vary widely, with reported forces ranging from 10 to 431 N (1 N = 0.225 lb of force). A functional load of approximately 70 N is considered clinically normal.
Factors Influencing Load Distribution
- Number of Teeth: The total number of teeth in the arch affects how forces are distributed. More teeth can share the load, reducing the stress on individual teeth.
- Type of Occlusion: The occlusal relationship (how the upper and lower teeth come together) influences how forces are transmitted through the dental arch.
- Occlusal Habits: Habits such as bruxism (teeth grinding) can significantly increase the forces applied to individual teeth, leading to greater strain and potential damage.
Clinical Implications
- Restorative Considerations: Understanding the biomechanical behavior of teeth under load is essential for designing restorations that can withstand functional forces without failure.
- Patient Management: Awareness of occlusal habits, such as bruxism, can guide clinicians in developing appropriate treatment plans, including the use of occlusal splints or other interventions to protect teeth from excessive forces.
Liners
Liners are relatively thin layers of material applied to the cavity preparation to protect the dentin from potential irritants and to provide a barrier against oral fluids and residual reactants from the restoration.
Types of Liners
1. Solution Liners
- Composition: Based on non-aqueous solutions of acetone, alcohol, or ether.
- Example: Varnish (e.g., Copal Wash).
- Composition:
- 10% copal resin
- 90% solvent
- Composition:
- Setting Reaction: Physical evaporation of the solvent, leaving a thin film of copal resin.
- Coverage: A single layer of varnish covers approximately 55% of the surface area. Applying 2-3 layers can increase coverage to 60-80%.
2. Suspension Liners
- Composition: Based on aqueous solvents (water-based).
- Example: Calcium hydroxide (Ca(OH)₂) liner.
- Indications: Used to protect dentinal tubules and provide a barrier against irritants.
- Disadvantage: High solubility in oral fluids, which can limit effectiveness over time.
3. Importance of Liners
A. Smear Layer
- The smear layer, which forms during cavity preparation, can decrease dentin permeability by approximately 86%, providing an additional protective barrier for the pulp.
B. Pulp Medication
- Liners can serve an important function in pulp medication, which helps prevent pulpal inflammation and promotes healing. This is particularly crucial in cases where the cavity preparation is close to the pulp.
Gingival Seat in Class II Restorations
The gingival seat is a critical component of Class II restorations, particularly in ensuring proper adaptation and retention of the restorative material. This guide outlines the key considerations for the gingival seat in Class II restorations, including its extension, clearance, beveling, and wall placement.
1. Extension of the Gingival Seat
A. Apical Extension
- Apical to Proximal Contact or Caries: The gingival seat should extend apically to the proximal contact point or the extent of caries, whichever is greater. This ensures that all carious tissue is removed and that the restoration has adequate retention.
2. Clearance from Adjacent Tooth
A. Clearance Requirement
- Adjacent Tooth Clearance: The gingival seat should clear the adjacent tooth by approximately 0.5 mm. This clearance is essential to prevent damage to the adjacent tooth and to allow for proper adaptation of the restorative material.
3. Beveling of the Gingival Margin
A. Bevel Angles
-
Amalgam Restorations: For amalgam restorations, the gingival margin is typically beveled at an angle of 15-20 degrees. This bevel helps to improve the adaptation of the amalgam and reduce the risk of marginal failure.
-
Cast Restorations: For cast restorations, the gingival margin is beveled at a steeper angle of 30-40 degrees. This angle enhances the strength of the margin and provides better retention for the cast material.
B. Contraindications for Beveling
- Root Surface Location: If the gingival seat is located on the root surface, beveling is contraindicated. This is to maintain the integrity of the root surface and avoid compromising the periodontal attachment.
4. Wall Placement
A. Facial and Lingual Walls
- Extension of Walls: The facial and lingual walls of the proximal box should be extended such that they clear the adjacent tooth by 0.2-0.3 mm. This clearance helps to ensure that the restoration does not impinge on the adjacent tooth and allows for proper contouring of the restoration.
B. Embrasure Placement
- Placement in Embrasures: The facial and lingual walls should be positioned in their respective embrasures. This placement helps to optimize the aesthetics and function of the restoration while providing adequate support.
Early Childhood Caries (ECC) Classification
Early Childhood Caries (ECC) is a significant public health concern characterized by the presence of carious lesions in young children. It is classified into three types based on severity, affected teeth, and underlying causes. Understanding these classifications helps in diagnosing, preventing, and managing ECC effectively.
Type I ECC (Mild to Moderate)
A. Characteristics
- Affected Teeth: Carious lesions primarily involve the molars and incisors.
- Age Group: Typically observed in children aged 2 to 5 years.
B. Causes
- Dietary Factors: The primary cause is usually a combination of cariogenic semisolid or solid foods, such as sugary snacks and beverages.
- Oral Hygiene: Lack of proper oral hygiene practices contributes significantly to the development of caries.
- Progression: As the cariogenic challenge persists, the number of affected teeth tends to increase.
C. Clinical Implications
- Management: Emphasis on improving oral hygiene practices and dietary modifications can help control and reverse early carious lesions.
Type II ECC (Moderate to Severe)
A. Characteristics
- Affected Teeth: Labio-lingual carious lesions primarily affect the maxillary incisors, with or without molar caries, depending on the child's age.
- Age Group: Typically seen soon after the first tooth erupts.
B. Causes
- Feeding Practices: Common causes include inappropriate use of feeding bottles, at-will breastfeeding, or a combination of both.
- Oral Hygiene: Poor oral hygiene practices exacerbate the condition.
- Progression: If not controlled, Type II ECC can progress to more advanced stages of caries.
C. Clinical Implications
- Intervention: Early intervention is crucial, including education on proper feeding practices and oral hygiene to prevent further carious development.
Type III ECC (Severe)
A. Characteristics
- Affected Teeth: Carious lesions involve almost all teeth, including the mandibular incisors.
- Age Group: Usually observed in children aged 3 to 5 years.
B. Causes
- Multifactorial: The etiology is a combination of various factors, including poor oral hygiene, dietary habits, and possibly socio-economic factors.
- Rampant Nature: This type of ECC is rampant and can affect immune tooth surfaces, leading to extensive decay.
C. Clinical Implications
- Management: Requires comprehensive dental treatment, including restorative procedures and possibly extractions. Education on preventive measures and regular dental visits are essential to manage and prevent recurrence.
Dental Burs
Dental burs are essential tools used in restorative dentistry for cutting, shaping, and finishing tooth structure. The design and characteristics of burs significantly influence their cutting efficiency, vibration, and overall performance. Below is a detailed overview of the key features and considerations related to dental burs.
1. Structure of Burs
A. Blades and Flutes
- Blades: The cutting edges on a bur are uniformly spaced, and the number of blades is always even.
- Flutes: The spaces between the blades are referred to as flutes. These flutes help in the removal of debris during cutting.
B. Cutting Action
- Number of Blades:
- Excavating Burs: Typically have 6-10 blades. These burs are designed for efficient removal of tooth structure.
- Finishing Burs: Have 12-40 blades, providing a smoother finish to the tooth surface.
- Cutting Efficiency:
- A greater number of blades results in a smoother cutting action at low speeds.
- However, as the number of blades increases, the space between subsequent blades decreases, which can reduce the overall cutting efficiency.
2. Vibration and RPM
A. Vibration
- Cycles per Second: Vibrations over 1,300 cycles/second are generally imperceptible to patients.
- Effect of Blade Number: Fewer blades on a bur tend to produce greater vibrations during use.
- RPM Impact: Higher RPM (revolutions per minute) results in less amplitude and greater frequency of vibration, contributing to a smoother cutting experience.
3. Rake Angle
A. Definition
- Rake Angle: The angle that the face of the blade makes with a radial line drawn from the center of the bur to the blade.
B. Cutting Efficiency
- Positive Rake Angle: Generally preferred for cutting efficiency.
- Radial Rake Angle: Intermediate efficiency.
- Negative Rake Angle: Less efficient for cutting.
- Clogging: Burs with a positive rake angle may experience clogging due to debris accumulation.
4. Clearance Angle
A. Definition
- Clearance Angle: This angle provides necessary clearance between the working edge and the cutting edge of the bur, allowing for effective cutting without binding.
5. Run-Out
A. Definition
- Run-Out: Refers to the eccentricity or maximum displacement of the bur head from its axis of rotation.
- Acceptable Value: The average clinically acceptable run-out is about 0.023 mm. Excessive run-out can lead to uneven cutting and discomfort for the patient.
6. Load Applied by Dentist
A. Load Ranges
- Low Speed: The load applied by the dentist typically ranges from 100 to 1500 grams.
- High Speed: The load is generally lower, ranging from 60 to 120 grams.
7. Diamond Stones
A. Characteristics
- Hardness: Diamond stones are the hardest and most efficient abrasive tools available for removing tooth enamel.
- Application: They are commonly used for cutting and finishing procedures due to their superior cutting ability and durability.