NEET MDS Lessons
Dental Materials
ZINC OXIDE AND EUGENOL
This material is used for many dental purposes ranging from temporary restorative material to pulp capping. The material is composed of a powder that is basically zinc oxide and a liquid that is called eugenol.
Chemical Composition.
The powder must contain between 70 and 100 percent zinc oxide. The manufacturer may add hydrogenated resins to increase strength and zinc acetate to hasten the set.
Eugenol is usually derived from oil of cloves. The oil of cloves contains more eugenol (82 percent) Eugenol is an obtundent (pain-relieving agent). It is a clear liquid that gradually changes to amber when exposed to light.
Physical Properties.
This material relieves pain, makes tissue less sensitive to pain, is slightly antiseptic, and is low in thermal conductivity. It provides a good marginal seal when placed in tooth cavities. The crushing strength (compression strength) of pure zinc oxide and eugenol is about 2,000 psi, which is low in comparison to other cements. The addition of hydrogenated resin increases the crushing strength to 5,000 psi.
CLINICAL USES OF ZINC OXIDE AND EUGENOL
Treatment Restoration. It helps prevent pulpal irritation in carious teeth, lost restorations, advanced caries, or pulpitis. This dental material also exerts a palliative effect on the pulp.
Temporary Cementing Medium. Zinc oxide and eugenol is used as a temporary cementing medium for crowns, inlays, and fixed partial dentures.
Intermediate Base. Zinc oxide and eugenol is used as an intermediate base. This material provides insulation between metallic restorations and vital tooth structure. Because of the low crushing strength, its use is sometimes contraindicated.
Surgical Packing or Dressing. The surgical dressing applied and adapted over the gingival area after a gingivectomy. This dressing protects the area and makes the tissue less sensitive.
Dental Solders
Applications-bridges and orthodontic appliances
Terms
Soldering -joining operation using filler metal that melts below 500° C
Brazing -joining operation using filler metal that melts above 500°C
Welding-melting and alloying of pieces to be joined
Fluxing
-Oxidative cleaning of area to be soldered
- Oxygen scavenging to prevent oxidation of alloy being soldered
16- 650 -- 650 fineness solder to be used with 16-karat alloys; fineness refers to the gold content
Classification
a. Gold solders-bridges
b. Silver solders-gold-substitute bridges and orthodontic alloys
Structure of gold solders
Composition-lower gold content than of alloys being soldered
Manipulation-solder must melt below melting temperature of alloy
Properties
1. Physical-similar to alloys being joined
2. Chemical-more prone to chemical and electrochemical corrosion
3. Mechanical-similar to alloy being joined
4. Biologic-similar to alloys being joined
Casting of glass or ceramic
A castable ceramic is prepared in a similar manner as metal cast preparation .
Glass is heated to 1360 degrees & then cast.
Phosphate bonded investments are used for this purpose .
Suspension liners
Applications
o Dentin lining under amalgam restorations
o Stimulation of reparative dentin formation
Components
-Calcium hydroxide powder
-Water
-Modifiers
Manipulation
Used as W/P or pastes Paint thin film on dentin → Use forced air for 15 to 30 seconds to dry → Film is thicker (15 µm) than varnishes → Do not use on enamel or cavosurface margins
Properties
Physical
-Electrically insulating barrier
-Too thin to be thermally insulating
Chemical
-High basicity for calcium hydroxide (pH is II)
-Dissolves readily in water and should not be used at exposed cavosurface margins or gaps may form
Mechanical - weak film
Biologic - calcium hydroxide dissolves, diffuses, and stimulates odontoblasts to occlude dentin tubules below cavity preparation
Components
a. Fillers added to most to control shrinkage
b. Matrix
Model. Cast. and Die Materials
Applications
- Gold casting, porcelain and porcelain-fused–to metal fabrication procedures
- Orthodontic and pedodontic appliance construction
- Study models for occlusal records
Terms
a. Models-replicas of hard and soft tissues for study of dental symmetry
b. Casts-working replicas of hard and soft tissues for use in the fabrication of appliances or restorations
c. Dies :- working replicas of one tooth (or a few teeth) used for the fabrication of a restoration
d. Duplicates-second casts prepared from original casts
Classification by materials
a Models :- (model plaster or orthodontic stone; gypsum product)
b. Stone casts (regular stone; gypsum product)
c. Stone dies (diestone; gypsum product)-may electroplated
d. Epoxy dies (epoxy polymer)-abrasion-resistant dies
Root canal sealers
Applications
Cementation of silver cone gutta-percha point
Paste filling material
Types
Zinc oxide-eugenol cement types
Noneugenol cement types
Therapeutic cement types
properties
Physical-radiopacity
Chemical-insolubility
Mechanical-flow; tensile strength
Biologic-inertness
Gingival tissue packs
Application-provide temporary displacement of gingival tissues
Composition-slow setting zinc oxide-eugenol cement mixed with cotton twills for texture and strength
Surgical dressings
1.Application-gingival covering after periodontal surgery
2. Composition-modified zinc oxide-eugenol cement (containing tannic, acid. rosin, and various oils)
Orthodontic cements
Application-cementation of orthodontic bands
Composition-zinc phosphate cement
Manipulation
Zinc phosphate types are routinely mixed with cold or frozen mixing slab to extend the working time
Enamel bonding agent types use acid etching for improved bonding
Band, bracket, or cement removal requires special care