NEET MDS Lessons
Dental Materials
Investment Materials
Investment is mold-making material
Applications
a. Mold-making materials for casting alloys
b. Mold-making materials for denture production
Classification
a. Gypsum-bonded investments (based on gypsum products for matrix)
b. Phosphate-bonded investments
c. Silicate-bonded investments
Components
a. Liquid-water or other reactant starts formation of matrix binder by reacting with reactant powder
b. Powder-reactant powder, filler, or modifiers
Manipulation
a. P/L mixed and placed in container around wax pattern
b. After setting, the investment is heated to eliminate the wax pattern in preparation for casting
CLEANING AND PICKLING ALLOYS
The surface oxidation or other contamination of dental alloys is a troublesome occurrence. The oxidation of base metals in most alloys can be kept to a minimum or avoided by using a properly adjusted method of heating the alloy and a suitable amount of flux when melting the alloy . Despite these precautions, as the hot metal enters the mold, certain alloys tend to become contaminated on the surface by combining with the hot mold gases, reacting with investment ingredients, or physically including mold particles in the metal surface. The surface of most cast, soldered, or otherwise heated metal dental appliances is cleaned by warming the structure in suitable solutions, mechanical polishing, or other treatment of the alloy to restore the normal surface condition.
Surface tarnish or oxidation can be removed by the process of pickling. Castings of noble or high-noble metal may be cleaned in this manner by warming them in a 50% sulfuric acid and water solution . . After casting, the alloy (with sprue attached) is placed into the warmed pickling solution for a few seconds. The pickling solution will reduce oxides that have formed during casting. However, pickling will not eliminate a dark color caused by carbon deposition
The effect of the solution can be seen by comparing the submerged surfaces to those that have still not contacted the solution. the ordinary inorganic acid solutions and do not release poisonous gases on boiling (as sulfuric acid does). In either case, the casting to be cleaned is placed in a suitable porcelain beaker with the pickling solution and warmed gently, but short of the boiling point. After a few moments of heating, the alloy surface normally becomes bright as the oxides are reduced. When the heating is completed, the acid may be poured from the beaker into the original storage container and the casting is thoroughly rinsed with water. Periodically, the pickling solution should be replaced with fresh solution to avoid excessive contamination.
Precautions to be taken while pickling
With the diversity of compositions of casting alloys available today, it is prudent to follow the manufacturer's instructions for pickling precisely, as all pickling solutions may not be compatible with all alloys. Furthermore, the practice of dropping a red-hot casting into the pickling solution should beavoided. This practice may alter the phase structure of the alloy or warp thin castings, and splashing acid may be dangerous to the operator. Finally, steel or stainless steel tweezers should not be used to remove castings from the pickling solutions. The pickling solution may dissolve the tweezers and plate the component metals onto the casting. Rubber-coated or Teflon tweezers are recommended for this purpose.
Bonding Agents
Applications-composites, resin-modified gIass ionomers, ceramic bonded to enamel restorations, veneers, orthodontic brackets, and desensitizing dentin by covering exposed tubules (Maryland bridges, composite and ceramic repair systems, amalgams and amalgam repair, and pinned amalgams)
Definitions;-
Smear layer - Layer of compacted debris on enamel and/or dentin from the cavity preparation process that is weakly held to the surface (6 to 7 MPa) , and that limits bonding agent strength if not removed
Etching (or, conditioning)- smear layer removal and production of microspaces for micromechanical bonding by dissolving –minor amounts of surface hydroxyapatite crystals
Priming..- micromechanical (and chemical) bonding to the microspaces created by conditioning step.
Conditioning/priming agent-agent that accomplishes both actions
Bonding- formation of resin layer that connect the primed surface to the overlying restoration (e.g., composite) .. –
Enamel bonding System-for bonding to enamel (although dentin bonding may be a Second step)
Dentin bonding system for bonding to dentin (although enamel bonding may have been a first step)
• First-generation dentin bonding system for bonding to smear layer
• New-generation dentin bonding system- for removing smear layer and etching intertubular dentin to allow primer and/or bonding agent to diffuse into spaces between collagen and form hybrid zone
Enamel and dentin bonding system-for bonding to enamel and dentin surfaces with the same procedures
Amalgam bonding system for bonding to enamel, dentin, and amalgam, dentin and amalgam during an amalgam placement procedure or for amalgam repair
Universal bonding system-for bonding to enamel, dentin, amalgam, porcelain , or any other substrate intraorally that may be necessary for a restorative procedure using the same set of procedures and materials
Types
Enamel bonding systems
Dentin bonding systems
Amalgam bonding systems
Universal bonding systems
Structure
o Components of bonding systems
o Conditioning agent-mineral or organic acid
Enamel only 37% phosphoric acid
Dentin only or enamel and .dentin---37% phosphoric acid, citric acid, maleic acid, or nitric acid
o Priming agent
Hydrophobic-solvent-soluble, light cured monomer system
Hydrophilic-water-soluble, light-cured monomer system
Bonding agent
BIS-GMA-type monomer system
UDMA-type monomer system
Reaction
Bonding occurs primarily by intimate micromechanical retention with the relief created by the conditioning step
Chemical bonding is possible but is not recognized as contributing significantly to the overall bond strength
Manipulation-follow manufacturer's directions
Properties
Physical-thermal expansion and contraction may create fatigue stresses that debond the interface and permit micro leakage
Chemical-water absorption into the bonding agent may chemically alter the bonding
Mechanical-mechanical stresses may produce fatigue that debonds the interface and permits microleakage
Enamel bonding-adhesion occurs by macrotags (between enamel prisms) and microtags (into enamel prisms) to produce micromechanical retention
Dentin bonding-adhesion occurs by penetration of smear layer and formation of microtags into intertubular dentin to produce a hybrid zone (interpenetration zone or diffusion zone) that microscopically intertwines collagen bundles and bonding agent polymer
Biologic
Conditioning agents may be locally irritating if they come into contact with soft tissue
Priming agents (uncured), particularly those based on HEMA, may be skin sensitizers after several contacts with dental personnel
Protect skin on hands and face from inadvertent contact with unset materials and/ or their vapors
HEMA and other priming monomers may penetrate through rubber gloves in relatively short times (60 to 90 seconds)
Properties of Acrylic Resins.
- They have a low thermal conductivity. These resins are not easily washed out by the acids of the oral cavity (low solubility). Acrylic resins are also resilient, which allows them to be used in stress-bearing areas.
- Acrylic resins exhibit a moderate shrinkage of from 3 to 8 percent. This shrinkage and low marginal strength can lead to marginal leakage. Acrylic resins have a low resistance to wear. Acrylic resins cannot be used over a zinc oxide and eugenol-type base because eugenol interferes with the acrylic curing process.
- Mixing. Insufficient mixing will cause an uneven color or streaks in the mixture. Overmixing will cause the material to harden before it can be placed
- Poor distortion resistance at higher temperatures, therefore dentures should not be cleaned in hot water
- Good resistance to color change
- Absorbs water and must be kept hydrated (stored in water when not in mouth) to prevent dehydration cycling and changes in dimensions
- Not resistant to strong oxidizing agents
- Low strength; however, flexible, with good fatigue resistance
- Poor scratch resistance; clean tissue-bearing surfaces of denture with soft brush and do not use abrasive cleaners
PROPERTY |
INGREDIENT |
|||
|
Silver |
Tin |
Copper |
Zinc |
Strength |
Increases |
|
|
|
Durability |
Increases |
|
|
|
Hardness |
|
|
Increases |
|
Expansion |
Increases |
Decreases |
Increases |
|
Flow |
Decreases |
Increases |
Decreases |
|
Color |
Imparts |
|
|
|
Setting time |
Decreases |
Increases |
Decreases |
|
Workability |
|
Increases |
|
Increases |
|
I . Procedure for single casting :
A 2.5 mm sprue former is recommended
for molar crowns 2.0 mm for premolars & partial coverage crowns .
II . Procedure for multiple casting :
Each unit is joined to a runner bar .
A single sprue feeds the runner bar
4 . SPRUE FORMER DIRECTION
Sprue Should be directed away from the delicate parts of the pattern
It should not be at right angles to a flat surface .(leads to turbulance porosity .)
Ideal angulation is 45 degrees .
5 . SPRUE FORMER LENGTH
Depends on the length of casting ring .. Length of the Sprue former should be such that it keeps the wax pattern about 6 to 8 mm away from the casting ring. Sprue former should be no longer than 2 cm. The pattern should be placed as close to the centre of the ring as possible.
Significance
Short Sprue Length:
The gases cannot be adequately vented to permit the molten alloy to fill the ring completelyleading to Back Pressure Porosity.
Long Sprue Length:
Fracture of investment, as mold will not withstand the impact force of the entering molten alloy.
Top of wax should be adjusted for :
6 mm for gypsum bonded investments .
3 -4 mm for phosphate bonded investments .
TYPES OF SPRUES
I . - Wax . II . Solid
- Plastic . Hollow
- Metal .
Denture Teeth
Use-complete or partial dentures
Type
a. Porcelain teeth
b. Acrylic resin teeth
c. Abrasion-resistant teeth (microfilled composite)
Structure and properties
1. Porcelain teeth (high-fusing porcelain)
Only bonded into denture base mechanically. Harder than natural teeth or other restorations and abrades those surfaces. Good aesthetics.Used when patients have good ridge support and sufficient room between the arches
2. Acrylic resin teeth (PMMA [polymethyl methacrylate])
Bonded pseudochemically into the denture base. Soft and easily worn by abrasive foods . Good initial aesthetics
Used with patients with poor ridges and in cases where they oppose natural teeth
3. Abrasion-resistant teeth (microfilled resins)
Bonded pseudochemically into the denture base.Better abrasion resistance then acrylic resin teeth