NEET MDS Lessons
Public Health Dentistry
Plaque index (PlI)
0 = No plaque in the gingival area.
1 = A thin film of plaque adhering to the free gingival margin and adjacent to the area of the tooth. The plaque is not readily visible, but is recognized by running a periodontal probe across the tooth surface.
2 = Moderate accumulation of plaque on the gingival margin, within the gingival pocket, and/or adjacent to the tooth surface, which can be observed visually.
3 = Abundance of soft matter within the gingival pocket and/or adjacent to the tooth surface.
Gingival index (GI)
0 = Healthy gingiva.
1= Mild inflammation: characterized by a slight change in color, edema. No bleeding observed on gentle probing.
2 = Moderate inflammation: characterized by redness, edema, and glazing. Bleeding on probing observed.
3 = Severe inflammation: characterized by marked redness and edema. Ulceration with a tendency toward spontaneous bleeding.
Modified gingival index (MGI)
0 = Absence of inflammation.
1 = Mild inflammation: characterized by a slight change in texture of any portion of, but not the entire marginal or papillary gingival unit.
2 = Mild inflammation: criteria as above, but involving the entire marginal or papillary gingival unit.
3 = Moderate inflammation: characterized by glazing, redness, edema, and/or hypertrophy of the marginal or papillary gingival unit.
4 = Severe inflammation: marked redness, edema, and/or hypertrophy of the marginal or papillary gingival unit, spontaneous bleeding, or ulceration.
Community periodontal index (CPI)
0 = Healthy gingiva.
1 = Bleeding observed after gentle probing or by visualization.
2 = Calculus felt during probing, but all of the black area of the probe remains visible (3.5-5.5 mm from ball tip).
3 = Pocket 4 or 5 mm (gingival margin situated on black area of probe, approximately 3.5-5.5 mm from the probe tip).
4 = Pocket > 6 mm (black area of probe is not visible).
Periodontal screening and recording (PSR)
0 = Healthy gingiva. Colored area of the probe remains visible, and no evidence of calculus or defective margins is detected.
1 = Colored area of the probe remains visible and no evidence of calculus or defective margins is detected, but bleeding on probing is noted.
2 = Colored area of the probe remains visible and calculus or defective margins is detected.
3 = Colored area of the probe remains partly visible (probe depth between 3.5-5.5 mm).
4 = Colored area of the probe completely disappears (probe depth > 5.5 mm).
Multiphase and multistage random sampling are advanced sampling techniques used in research, particularly in public health and social sciences, to efficiently gather data from large and complex populations. Both methods are designed to reduce costs and improve the feasibility of sampling while maintaining the representativeness of the sample. Here’s a detailed explanation of each method:
Multiphase Sampling
Description: Multiphase sampling involves conducting a series of sampling phases, where each phase is used to refine the sample further. This method is particularly useful when the population is large and heterogeneous, and researchers want to focus on specific subgroups or characteristics.
Process:
- Initial Sampling: In the first phase, a large sample is drawn from the entire population using a probability sampling method (e.g., simple random sampling or stratified sampling).
- Subsequent Sampling: In the second phase, researchers may apply additional criteria to select a smaller, more specific sample from the initial sample. This could involve stratifying the sample based on certain characteristics (e.g., age, health status) or conducting follow-up surveys.
- Data Collection: Data is collected from the final sample, which is more targeted and relevant to the research question.
Applications:
- Public Health Surveys: In a study assessing health behaviors, researchers might first sample a broad population and then focus on specific subgroups (e.g., smokers, individuals with chronic diseases) for more detailed analysis.
- Qualitative Research: Multiphase sampling can be used to identify participants for in-depth interviews after an initial survey has highlighted specific areas of interest.
Multistage Sampling
Description: Multistage sampling is a complex form of sampling that involves selecting samples in multiple stages, often using a combination of probability sampling methods. This technique is particularly useful for large populations spread over wide geographic areas.
Process:
- First Stage: The population is divided into clusters (e.g., geographic areas, schools, or communities). A random sample of these clusters is selected.
- Second Stage: Within each selected cluster, a further sampling method is applied to select individuals or smaller units. This could involve simple random sampling, stratified sampling, or systematic sampling.
- Additional Stages: More stages can be added if necessary, depending on the complexity of the population and the research objectives.
Applications:
- National Health Surveys: In a national health survey, researchers might first randomly select states (clusters) and then randomly select households within those states to gather health data.
- Community Health Assessments: Multistage sampling can be used to assess oral health in a large city by first selecting neighborhoods and then sampling residents within those neighborhoods.
Key Differences
-
Structure:
- Multiphase Sampling involves multiple phases of sampling that refine the sample based on specific criteria, often leading to a more focused subgroup.
- Multistage Sampling involves multiple stages of sampling, often starting with clusters and then selecting individuals within those clusters.
-
Purpose:
- Multiphase Sampling is typically used to narrow down a broad sample to a more specific group for detailed study.
- Multistage Sampling is used to manage large populations and geographic diversity, making it easier to collect data from a representative sample.
Case-Control Study and Cohort Study are two types of epidemiological studies
commonly used in dental research to identify potential risk factors and
understand the causality of diseases or conditions.
1. Case-Control Study:
A case-control study is a retrospective analytical study design in which
researchers start with a group of patients who already have the condition of
interest (the cases) and a group of patients without the condition (the
controls) and then work backward to determine if the cases and controls have
different exposures to potential risk factors. It is often used when the
condition is relatively rare, when it takes a long time to develop, or when it
is difficult to follow individuals over time.
In a case-control study, the cases are selected from a population that already
has the disease or condition being studied. The controls are selected from the
same population but do not have the disease. The researchers then compare the
two groups to see if there is a statistically significant difference in the
frequency of exposure to a particular risk factor.
Example in Dentistry:
Suppose we want to investigate whether there is a link between periodontal
disease and cardiovascular disease. A case-control study might be set up as
follows:
- Cases: Patients with a diagnosis of periodontal disease.
- Controls: Patients without a diagnosis of periodontal disease but otherwise
similar to the cases (same age, gender, socioeconomic status, etc.).
- Exposure of Interest: Cardiovascular disease.
The researchers would collect data on the medical and dental histories of both
groups, looking for a history of cardiovascular disease. They would compare the
proportion of cases with a history of cardiovascular disease to the proportion
of controls with the same history. If a significantly higher proportion of cases
have a history of cardiovascular disease, this suggests that there may be an
association between periodontal disease and cardiovascular disease. However,
because the study is retrospective, it does not prove that periodontal disease
causes cardiovascular disease. It merely suggests that the two are associated.
Advanatages:
- Efficient for studying rare diseases.
- Relatively quick and inexpensive.
- Can be used to identify multiple risk factors for a condition.
- Useful for generating hypotheses for further research.
Disadvantages:
- Can be prone to selection and recall bias.
- Cannot determine the temporal sequence of exposure and outcome.
- Cannot calculate the incidence rate or the absolute risk of developing the
disease.
- Odds ratios may not accurately reflect the relative risk in the population if
the disease is not rare.
2. Cohort Study:
A cohort study is a prospective longitudinal study that follows a group of
individuals (the cohort) over time to determine if exposure to specific risk
factors is associated with the development of a particular disease or condition.
Cohort studies are particularly useful in assessing the risk factors for
diseases that take a long time to develop or when the exposure is rare.
In a cohort study, participants are recruited and categorized based on their
exposure to a particular risk factor (exposed and non-exposed groups). The
researchers then follow these groups over time to see who develops the disease
or condition of interest.
Example in Dentistry:
Let's consider the same hypothesis as before, but this time using a cohort study
design:
- Cohort: A group of individuals who are initially free of
cardiovascular disease, but some have periodontal disease (exposed) and others
do not (non-exposed).
- Follow-up: Researchers would follow this cohort over a
certain period (e.g., 10 years).
- Outcome Measure: Incidence of new cases of cardiovascular
disease.
The researchers would track the incidence of cardiovascular disease in both
groups and compare the rates. If the exposed group (those with periodontal
disease) has a higher rate of developing cardiovascular disease than the
non-exposed group (those without periodontal disease), this would suggest that
periodontal disease may be a risk factor for cardiovascular disease.
Advanatges:
- Allows for the calculation of incidence rates.
- Can determine the temporal relationship between exposure and outcome.
- Can be used to study the natural history of a disease.
- Can assess multiple outcomes related to a single exposure.
- Less prone to recall bias since exposure is assessed before the outcome
occurs.
Disdvanatges:
- Can be expensive and time-consuming.
- Can be difficult to maintain participant follow-up, leading to loss to
follow-up bias.
- Rare outcomes may require large cohorts and long follow-up periods.
- Can be affected by confounding variables if not properly controlled for.
Both case-control and cohort studies are valuable tools in dental research.
Case-control studies are retrospective, quicker, and less costly, but
may be limited by biases. Cohort studies are prospective, more robust for
establishing causal relationships, but are more resource-intensive and require
longer follow-up periods. The choice of study design depends on the
research question, the availability of resources, and the nature of the disease
or condition being studied.
1. Disease is multifactorial in nature; difficult to identify one particular cause
a. Host factors
(1) Immunity to disease/natural resistance
(2) Heredity
(3) Age, gender, race
(4) Physical or morphologic factors
b. Agent factors
(1) Biologic—microbiologic
(2) Chemical—poisons, dosage levels
(3) Physical—environmental exposure
c. Environment factors
(1) Physical—geography and climate
(2) Biologic—animal hosts and vectors
(3) Social —socioeconomic, education, nutrition
2. All factors must be present to be sufficient cause for disease
3. Interplay of these factors is ongoing: to affect the disease, attack at the weakest link
Some Terms
1. Epidemic—a disease of significantly greater prevalence than normal; more than the expected number of cases; a disease that spreads rapidly through a demographic segment of a population
2. Endemic—continuing problem involving normal disease prevalence; the expected number of cases; indigenous to a population or geographic area
3. Pandemic—occurring throughout the population of a country, people, or the world
4. Mortality—death
5. Morbidity—disease
6. Rate—a numerical ratio in which the number of actual occurrences appears as the numerator and number of possible occurrences appears as the denominator, often used in compilation of data concerning the prevalence and incidence of events; measure of time is an intrinsic part of the denominator.
Common tests in dental biostatics and applications
Dental biostatistics involves the application of statistical methods to the
study of dental medicine and oral health. It is used to analyze data, make
inferences, and support decision-making in various dental fields such as
epidemiology, clinical research, public health, and education. Some common tests
and their applications in dental biostatistics include:
1. T-test: This test is used to compare the means of two
independent groups. For example, it can be used to compare the pain levels
experienced by patients who receive two different types of local anesthetics
during dental procedures.
2. ANOVA (Analysis of Variance): This test is used to compare
the means of more than two independent groups. It is often used in dental
studies to evaluate the effectiveness of multiple treatments or to compare the
success rates of different dental materials.
3. Chi-Square Test: This is a non-parametric test used to
assess the relationship between categorical variables. In dental research, it
might be used to determine if there is an association between tooth decay and
socioeconomic status, or between the type of dental restoration and the
frequency of post-operative complications.
4. McNemar's Test: This is a statistical test used to analyze
paired nominal data, such as the change in the presence or absence of a
condition over time. In dentistry, it can be applied to assess the effectiveness
of a treatment by comparing the presence of dental caries in the same patients
before and after the treatment.
5. Kruskal-Wallis Test: This is another non-parametric test for
comparing more than two independent groups. It's useful when the data is not
normally distributed. For instance, it can be used to compare the effectiveness
of three different types of toothpaste in reducing plaque and gingivitis.
6. Mann-Whitney U Test: This test is used to compare the
medians of two independent groups when the data is not normally distributed. It
is often used in dental studies to compare the effectiveness of different
interventions, such as comparing the effectiveness of two mouthwashes in
reducing plaque and gingivitis.
7. Regression Analysis: This statistical method is used to
analyze the relationship between one dependent variable (e.g., tooth loss) and
one or more independent variables (e.g., age, oral hygiene habits, smoking
status). It helps to identify risk factors and predict outcomes.
8. Logistic Regression: This is used to model the relationship
between a binary outcome (e.g., presence or absence of dental caries) and one or
more independent variables. It is commonly used in dental epidemiology to assess
the risk factors for various oral diseases.
9. Cox Proportional Hazards Model: This is a survival analysis
technique used to estimate the time until an event occurs. In dentistry, it
might be used to determine the factors that influence the time until a dental
implant fails.
10. Kaplan-Meier Survival Analysis: This method is used to
estimate the probability of survival over time. It's commonly applied in dental
studies to evaluate the success rates of dental restorations or implants.
11. Fisher's Exact Test: This is used to test the significance
of a relationship between two categorical variables, especially when the sample
size is small. It might be used in a study examining the association between a
specific genetic mutation and the occurrence of oral cancer.
12. Spearman's Rank Correlation Coefficient: This is a
non-parametric measure of the correlation between two continuous or ordinal
variables. It could be used to assess the relationship between the severity of
periodontal disease and the patient's self-reported oral hygiene habits.
13. Cohen's kappa coefficient: This measures the agreement
between two or more raters who are categorizing items into ordered categories.
It is useful in calibration studies among dental professionals to assess the
consistency of their diagnostic or clinical evaluations.
14. Sample Size Calculation: Determining the appropriate sample
size is crucial for ensuring that dental studies are adequately powered to
detect significant differences. This is done using statistical formulas that
take into account the expected effect size, significance level, and power of the
study.
15. Confidence Intervals (CIs): CIs provide a range within
which the true population parameter is likely to lie, given the sample data.
They are commonly reported in dental studies to indicate the precision of the
results, for instance, the estimated difference in treatment efficacy between
two groups.
16. Statistical Significance vs. Clinical Significance: Dental
biostatistics helps differentiate between results that are statistically
significant (unlikely to have occurred by chance) and clinically significant
(large enough to have practical implications for patient care).
17. Meta-Analysis: This technique combines the results of
multiple studies to obtain a more precise estimate of the effectiveness of a
treatment or intervention. It is frequently used in dental research to summarize
the evidence for various treatments and to guide clinical practice.
These tests and applications are essential for designing, conducting, and
interpreting dental research studies. They help ensure that the results are
valid and reliable, and can be applied to improve the quality of oral health
care.
Sampling methods are crucial in public health dentistry as they enable
researchers and practitioners to draw conclusions about the oral health of a
population based on a smaller, more manageable subset of individuals. This
approach is cost-effective, time-saving, and statistically valid. Here are the
most commonly used sampling methods in public health dentistry with their
applications:
1. Simple Random Sampling: This is the most basic form of
probability sampling, where each individual in the population has an equal
chance of being selected. It involves the random selection of subjects from a
complete list of all individuals (sampling frame). This method is applied when
the population is homogeneous and the sample is expected to be representative of
the entire population.
It is useful in studies that aim to determine prevalence of dental caries or
periodontal disease in a community, assess the effectiveness of oral health
programs, or evaluate the need for dental services.
2. Stratified Random Sampling: This technique involves dividing
the population into strata (subgroups) based on relevant characteristics such as
age, gender, socioeconomic status, or geographic location. Random samples are
then drawn from each stratum. This method ensures that the sample is more
representative of the population by reducing sampling error.
It is often used when the population is heterogeneous, and there is a need to analyze the data separately for each subgroup to understand the impact of different variables on oral health.
Applications:
- Oral Health Disparities: Stratified sampling can be used to ensure representation from different socioeconomic groups when studying access to dental care.
- Age-Specific Studies: In research focusing on pediatric dental health, stratified sampling can help ensure that children from various age groups are adequately represented.
3. Cluster Sampling: In this method, the population is divided
into clusters (e.g., schools, neighborhoods, or dental clinics) and a random
sample of clusters is selected. All individuals within the chosen clusters are
included in the study. This approach is useful when the population is widely
dispersed, and it reduces travel and data collection costs. It is often applied
in community-based dental health surveys and epidemiological studies.
Applications:
- School-Based Dental Programs: Cluster sampling can be used to select schools within a district to assess the oral health status of children, where entire schools are chosen rather than individual students.
- Community Health Initiatives: In evaluating the effectiveness of community dental health programs, clusters (e.g., neighborhoods) can be selected to represent the population.
4. Systematic Sampling: This technique involves selecting every
nth individual from the sampling frame, where n is the sampling interval. It is
a probability sampling method that can be used when the population has some
order or pattern. For instance, in a school-based dental health survey, students
from every third grade might be chosen to participate.
This method is efficient for large populations and can be representative if the sampling interval is appropriate.
Applications:
- Community Health Assessments: Systematic sampling can be used to select households for surveys on oral hygiene practices, where every 10th household is chosen from a list of all households in a neighborhood.
- Patient Records Review: In retrospective studies, systematic sampling can be applied to select patient records at regular intervals to assess treatment outcomes.
5. Multi-stage Sampling: This is a combination of different
sampling methods where the population is divided into smaller and smaller
clusters in each stage. It is particularly useful for large-scale studies where
the population is not easily accessible or when the study requires detailed data
from various levels (e.g., national to local levels).
For example, in a multi-stage design, a random sample of states might be selected in the first stage, followed by random samples of counties within those states, and then schools within the selected counties.
Applications in Public Dental Health:
- National Oral Health Surveys: Researchers may first randomly select states or regions (clusters) and then randomly select dental clinics or households within those regions to assess the prevalence of dental diseases or access to dental care.
- Community Health Assessments: In a large city, researchers might select neighborhoods as the first stage and then sample residents within those neighborhoods to evaluate oral health behaviors and access to dental services.
- Program Evaluation: Multi-stage sampling can be used to evaluate the effectiveness of community dental health programs by selecting specific program sites and then sampling participants from those sites.
6. Convenience Sampling: Although not a probability sampling method,
convenience sampling is often used in public health dentistry due to practical
constraints. It involves selecting individuals who are readily available and
willing to participate. While this method may introduce bias, it is useful for
pilot studies, exploratory research, or when the goal is to obtain preliminary
data quickly and inexpensively. It is important to be cautious when generalizing
findings from convenience samples to the broader population.
Applications:
- Pilot Studies: Convenience sampling can be used in preliminary studies to gather initial data on dental health behaviors among easily accessible groups, such as dental clinic patients.
- Focus Groups: In qualitative research, convenience sampling may be used to gather opinions from dental patients who are readily available for discussion.
7. Quota Sampling: This is a non-probability sampling method
where the researcher sets quotas for specific characteristics of the population
(e.g., age, gender) and then recruits individuals to meet those quotas. It is
often used in surveys where it is crucial to have a representative sample
regarding certain demographic variables.
However, it may not be as statistically robust as probability sampling methods and can introduce bias if the quotas are not met correctly.
Applications in Public Dental Health:
- Targeted Surveys: Researchers can use quota sampling to ensure that specific demographic groups (e.g., children, elderly, low-income individuals) are adequately represented in surveys assessing oral health knowledge and behaviors.
- Program Evaluation: In evaluating community dental health programs, quota sampling can help ensure that participants reflect the diversity of the target population, allowing for a more comprehensive understanding of program impact.
- Focus Groups: Quota sampling can be used to assemble focus groups for qualitative research, ensuring that participants represent various perspectives based on predetermined characteristics relevant to the study.
8. Purposive (Judgmental) ampling: In this approach,
participants are selected based on specific criteria that the researcher
believes are important for the study. This method is useful for studies that
require in-depth understanding, such as qualitative research or when studying a
rare condition. It is essential to ensure that the sample is diverse enough to
provide a comprehensive perspective.
Applications:
- Expert Interviews: In studies exploring dental policy or public health initiatives, purposive sampling can be used to select key informants, such as dental professionals or public health officials.
- Targeted Health Interventions: When studying specific populations (e.g., individuals with disabilities), purposive sampling ensures that the sample includes individuals who meet the criteria.
9. Snowball Sampling: This is a non-probability method where
initial participants are selected based on the researcher's judgment and then
asked to refer others with similar characteristics. It is often used in studies
involving hard-to-reach populations, such as those with rare oral conditions or
specific behaviors.
While it can provide valuable insights, the sample may not be representative of the broader population.
Applications :
- Studying Marginalized Groups: Researchers can use snowball sampling to identify and recruit individuals from marginalized communities (e.g., homeless individuals, low-income families) to assess their oral health needs and barriers to accessing dental care.
- Behavioral Research: In studies examining specific behaviors (e.g., smoking and oral health), initial participants can help identify others who share similar characteristics or experiences, facilitating data collection from a relevant population.
- Qualitative Research: Snowball sampling can be effective in qualitative studies exploring the experiences of individuals with specific dental conditions or those participating in community dental health programs.
10. Time-Space Sampling: This technique is used to study
populations that are not fixed in place, such as patients attending a dental
clinic during specific hours. Researchers select random times and days and then
include all patients who visit the clinic during those times in the sample.
This method can be useful for assessing the representativeness of clinic-based studies.
Applications
- Mobile Populations: Researchers can use time-space sampling to assess the oral health of populations that may not have a fixed residence, such as migrant workers or individuals living in temporary housing.
- Event-Based Sampling: Public health campaigns or dental health fairs can be used as time-space sampling points to recruit participants for surveys on oral health behaviors and access to care.
- Community Outreach: Time-space sampling can help identify individuals attending community events or clinics to gather data on their oral health status and service utilization.
The choice of sampling method in public health dentistry depends on the research
question, the population's characteristics, the available resources, and the
desired level of generalizability. Probability sampling methods are generally
preferred for their scientific rigor, but non-probability methods may be
necessary under certain circumstances. It is essential to justify the chosen
method and consider its limitations when interpreting the results.
Factors Considered for Prescribing Fluoride Tablets
Child's Age:
- Different age groups require different dosages.
- Children older than 4 years may receive lozenges or chewable tablets, while those younger than 4 are typically prescribed liquid fluoride drops.
Fluoride Concentration in Drinking Water:
- The fluoride level in the child's drinking water is crucial.
- If the fluoride concentration is less than 1 part per million (ppm), systemic fluoride supplementation is recommended.
Risk of Dental Caries:
- Children at higher risk for dental decay may need additional fluoride supplementation.
- Regular dental assessments help determine the need for fluoride.
Overall Health and Dietary Needs:
- Consideration of the child's overall health and any dietary restrictions that may affect fluoride intake.
Recommended Doses of Fluoride Tablets
For Children Aged 6 Months to 4 Years:
- Liquid drops are typically prescribed in doses of 0.125, 0.25, and 0.5 mg of fluoride ion.
For Children Aged 4 Years and Older:
- Chewable tablets or lozenges are recommended, usually at doses of 0.5 mg to 1 mg of fluoride ion.
Adjustments Based on Water Fluoride Levels:
- Doses may be adjusted based on the fluoride content in the child's drinking water to ensure adequate protection against dental caries.
Duration of Supplementation:
- Fluoride supplementation is generally continued until the child reaches 16 years of age, depending on their fluoride exposure and dental health status.