Talk to us?

- NEETMDS- courses
Public Health Dentistry

EPIDEMIOLOGY

Epidemiology is the study of the Distribution and determinants of disease frequency in Humans.

Epidemiology— study of health and disease in human populations and how these states are influenced by the environment and ways of living; concerned with factors and conditions that determine the occurrence and distribution of health. disease, defects. disability and deaths among individuals

Epidemiology, in conjunction with the statistical and research methods used, focuses on comparison between groups or defined populations

Characteristics of epidemiology:

1. Groups rather than individuals are studied

2. Disease is multifactorial; host-agent-environment relationship becomes critical

3. A disease state depends on exposure to a specific agent, strength of the agent.  susceptibility of the host, and environmental conditions

4. Factors

  • Host: age, race, ethnic background, physiologic state, gender, culture
  • Agent: chemical, microbial, physical or mechanical irritants, parasitic, viral or bacterial
  • Environment: climate or physical environment, food sources, socioeconomic conditions

5. Interaction among factors affects disease or health status

 

 

Uses of epidemiology

I. Study of patterns among groups

2. Collecting data to describe normal biologic processes

3. Understanding the natural history of disease

4. Testing hypotheses for prevention and control of disease through special studies in populations

5. Planning and evaluating health care services

6. Studying of non disease entities such as suicide or accidents

7. Measuring the distribution of diseases in populations

8. Identifying risk factors and determinants of disease

Berkson's Bias is a type of selection bias that occurs in case-control studies, particularly when the cases and controls are selected from a hospital or clinical setting. It arises when the selection of cases (individuals with the disease) and controls (individuals without the disease) is influenced by the presence of other conditions or factors, leading to a distortion in the association between exposure and outcome.

Key Features of Berkson's Bias

  1. Hospital-Based Selection: Berkson's Bias typically occurs in studies where both cases and controls are drawn from the same hospital or clinical setting. This can lead to a situation where the controls are not representative of the general population.

  2. Association with Other Conditions: Individuals who are hospitalized may have multiple health issues or risk factors that are not present in the general population. This can create a misleading association between the exposure being studied and the disease outcome.

  3. Underestimation or Overestimation of Risk: Because the controls may have different health profiles compared to the general population, the odds ratio calculated in the study may be biased. This can lead to either an overestimation or underestimation of the true association between the exposure and the disease.

Example of Berkson's Bias

Consider a study investigating the relationship between smoking and lung cancer, where both cases (lung cancer patients) and controls (patients without lung cancer) are selected from a hospital. If the controls are patients with other diseases that are also related to smoking (e.g., chronic obstructive pulmonary disease), this could lead to Berkson's Bias. The controls may have a higher prevalence of smoking than the general population, which could distort the perceived association between smoking and lung cancer.

Implications of Berkson's Bias

  • Misleading Conclusions: Berkson's Bias can lead researchers to draw incorrect conclusions about the relationship between exposures and outcomes, which can affect public health recommendations and clinical practices.
  • Generalizability Issues: Findings from studies affected by Berkson's Bias may not be generalizable to the broader population, limiting the applicability of the results.

Mitigating Berkson's Bias

To reduce the risk of Berkson's Bias in research, researchers can:

  1. Select Controls from the General Population: Instead of selecting controls from a hospital, researchers can use population-based controls to ensure a more representative sample.

  2. Use Multiple Control Groups: Employing different control groups can help identify and account for potential biases.

  3. Stratify Analyses: Stratifying analyses based on relevant characteristics (e.g., age, sex, comorbidities) can help to control for confounding factors.

  4. Conduct Sensitivity Analyses: Performing sensitivity analyses can help assess how robust the findings are to different assumptions about the data.

Multiphase and multistage random sampling are advanced sampling techniques used in research, particularly in public health and social sciences, to efficiently gather data from large and complex populations. Both methods are designed to reduce costs and improve the feasibility of sampling while maintaining the representativeness of the sample. Here’s a detailed explanation of each method:

Multiphase Sampling

Description: Multiphase sampling involves conducting a series of sampling phases, where each phase is used to refine the sample further. This method is particularly useful when the population is large and heterogeneous, and researchers want to focus on specific subgroups or characteristics.

Process:

  1. Initial Sampling: In the first phase, a large sample is drawn from the entire population using a probability sampling method (e.g., simple random sampling or stratified sampling).
  2. Subsequent Sampling: In the second phase, researchers may apply additional criteria to select a smaller, more specific sample from the initial sample. This could involve stratifying the sample based on certain characteristics (e.g., age, health status) or conducting follow-up surveys.
  3. Data Collection: Data is collected from the final sample, which is more targeted and relevant to the research question.

Applications:

  • Public Health Surveys: In a study assessing health behaviors, researchers might first sample a broad population and then focus on specific subgroups (e.g., smokers, individuals with chronic diseases) for more detailed analysis.
  • Qualitative Research: Multiphase sampling can be used to identify participants for in-depth interviews after an initial survey has highlighted specific areas of interest.

Multistage Sampling

Description: Multistage sampling is a complex form of sampling that involves selecting samples in multiple stages, often using a combination of probability sampling methods. This technique is particularly useful for large populations spread over wide geographic areas.

Process:

  1. First Stage: The population is divided into clusters (e.g., geographic areas, schools, or communities). A random sample of these clusters is selected.
  2. Second Stage: Within each selected cluster, a further sampling method is applied to select individuals or smaller units. This could involve simple random sampling, stratified sampling, or systematic sampling.
  3. Additional Stages: More stages can be added if necessary, depending on the complexity of the population and the research objectives.

Applications:

  • National Health Surveys: In a national health survey, researchers might first randomly select states (clusters) and then randomly select households within those states to gather health data.
  • Community Health Assessments: Multistage sampling can be used to assess oral health in a large city by first selecting neighborhoods and then sampling residents within those neighborhoods.

Key Differences

  • Structure:

    • Multiphase Sampling involves multiple phases of sampling that refine the sample based on specific criteria, often leading to a more focused subgroup.
    • Multistage Sampling involves multiple stages of sampling, often starting with clusters and then selecting individuals within those clusters.
  • Purpose:

    • Multiphase Sampling is typically used to narrow down a broad sample to a more specific group for detailed study.
    • Multistage Sampling is used to manage large populations and geographic diversity, making it easier to collect data from a representative sample.

Factors Considered for Prescribing Fluoride Tablets

Child's Age:

  • Different age groups require different dosages.
  • Children older than 4 years may receive lozenges or chewable tablets, while those younger than 4 are typically prescribed liquid fluoride drops.

Fluoride Concentration in Drinking Water:

  • The fluoride level in the child's drinking water is crucial.
  • If the fluoride concentration is less than 1 part per million (ppm), systemic fluoride supplementation is recommended.

Risk of Dental Caries:

  • Children at higher risk for dental decay may need additional fluoride supplementation.
  • Regular dental assessments help determine the need for fluoride.

Overall Health and Dietary Needs:

  • Consideration of the child's overall health and any dietary restrictions that may affect fluoride intake.

Recommended Doses of Fluoride Tablets

For Children Aged 6 Months to 4 Years:

  • Liquid drops are typically prescribed in doses of 0.125, 0.25, and 0.5 mg of fluoride ion.

For Children Aged 4 Years and Older:

  • Chewable tablets or lozenges are recommended, usually at doses of 0.5 mg to 1 mg of fluoride ion.

Adjustments Based on Water Fluoride Levels:

  • Doses may be adjusted based on the fluoride content in the child's drinking water to ensure adequate protection against dental caries.

Duration of Supplementation:

  • Fluoride supplementation is generally continued until the child reaches 16 years of age, depending on their fluoride exposure and dental health status.

Common tests in dental biostatics and applications

Dental biostatistics involves the application of statistical methods to the study of dental medicine and oral health. It is used to analyze data, make inferences, and support decision-making in various dental fields such as epidemiology, clinical research, public health, and education. Some common tests and their applications in dental biostatistics include:

1. T-test: This test is used to compare the means of two independent groups. For example, it can be used to compare the pain levels experienced by patients who receive two different types of local anesthetics during dental procedures.

2. ANOVA (Analysis of Variance): This test is used to compare the means of more than two independent groups. It is often used in dental studies to evaluate the effectiveness of multiple treatments or to compare the success rates of different dental materials.

3. Chi-Square Test: This is a non-parametric test used to assess the relationship between categorical variables. In dental research, it might be used to determine if there is an association between tooth decay and socioeconomic status, or between the type of dental restoration and the frequency of post-operative complications.

4. McNemar's Test: This is a statistical test used to analyze paired nominal data, such as the change in the presence or absence of a condition over time. In dentistry, it can be applied to assess the effectiveness of a treatment by comparing the presence of dental caries in the same patients before and after the treatment.

5. Kruskal-Wallis Test: This is another non-parametric test for comparing more than two independent groups. It's useful when the data is not normally distributed. For instance, it can be used to compare the effectiveness of three different types of toothpaste in reducing plaque and gingivitis.

6. Mann-Whitney U Test: This test is used to compare the medians of two independent groups when the data is not normally distributed. It is often used in dental studies to compare the effectiveness of different interventions, such as comparing the effectiveness of two mouthwashes in reducing plaque and gingivitis.

7. Regression Analysis: This statistical method is used to analyze the relationship between one dependent variable (e.g., tooth loss) and one or more independent variables (e.g., age, oral hygiene habits, smoking status). It helps to identify risk factors and predict outcomes.

8. Logistic Regression: This is used to model the relationship between a binary outcome (e.g., presence or absence of dental caries) and one or more independent variables. It is commonly used in dental epidemiology to assess the risk factors for various oral diseases.

9. Cox Proportional Hazards Model: This is a survival analysis technique used to estimate the time until an event occurs. In dentistry, it might be used to determine the factors that influence the time until a dental implant fails.

10. Kaplan-Meier Survival Analysis: This method is used to estimate the probability of survival over time. It's commonly applied in dental studies to evaluate the success rates of dental restorations or implants.

11. Fisher's Exact Test: This is used to test the significance of a relationship between two categorical variables, especially when the sample size is small. It might be used in a study examining the association between a specific genetic mutation and the occurrence of oral cancer.

12. Spearman's Rank Correlation Coefficient: This is a non-parametric measure of the correlation between two continuous or ordinal variables. It could be used to assess the relationship between the severity of periodontal disease and the patient's self-reported oral hygiene habits.

13. Cohen's kappa coefficient: This measures the agreement between two or more raters who are categorizing items into ordered categories. It is useful in calibration studies among dental professionals to assess the consistency of their diagnostic or clinical evaluations.

14. Sample Size Calculation: Determining the appropriate sample size is crucial for ensuring that dental studies are adequately powered to detect significant differences. This is done using statistical formulas that take into account the expected effect size, significance level, and power of the study.

15. Confidence Intervals (CIs): CIs provide a range within which the true population parameter is likely to lie, given the sample data. They are commonly reported in dental studies to indicate the precision of the results, for instance, the estimated difference in treatment efficacy between two groups.

16. Statistical Significance vs. Clinical Significance: Dental biostatistics helps differentiate between results that are statistically significant (unlikely to have occurred by chance) and clinically significant (large enough to have practical implications for patient care).

17. Meta-Analysis: This technique combines the results of multiple studies to obtain a more precise estimate of the effectiveness of a treatment or intervention. It is frequently used in dental research to summarize the evidence for various treatments and to guide clinical practice.

These tests and applications are essential for designing, conducting, and interpreting dental research studies. They help ensure that the results are valid and reliable, and can be applied to improve the quality of oral health care.

Classifications of epidemiologic research

1. Descriptive research —involves description, documentation, analysis, and interpretation of data to evaluate a current event or situation

a. incidence—number of new cases of a specific disease within a defined population over a period of time

b. Prevalence—number of persons in a population affected by a condition at any one time

c. Count—simplest sum of disease: number of cases of disease occurrence

d. Proportion—use of a count with the addition of a denominator to determine prevalence:

does not include a time dimension: useful to evaluate prevalence of caries in schoolchildren or tooth loss in adult populations

e. Rate— uses a standardized denominator and includes a time dimension. for example. the number of deaths of newborn infants within first year of life per 1000 births

2. Analytical research—determines the cause of disease or if a causal relationship exists between a factor and a disease

a. Prospective study—planning of the entire study is completed before data are collected and analyzed; population is followed through time to determine which members develop the disease; several hypotheses may be tested at on time

b. Cohort study—individuals are classified into groups according to whether or not they pos- sess a particular characteristic thought to be related to the condition of interest; observations occur over time to see who develops dis ease or condition

c. Retrospective study— decision to carry out an investigation using observations or data that have been collected in the past; data may be incomplete or in a manner not appropriate for study

d. Cross-sectional study— study of subgroups of individuals in a specific and limited time frame to identify either initially to describe current status or developmental changes in the overall group from the perspective of what is typical in each subgroup

e. Longitudinal study—investigation of the same group of individuals over an extended period of time to identify a change or devel opment in that group

3. Experimental research—used when the etiology of the disease is established and the researcher wishes to determine the effectiveness of altering some factor or factors; deliberate applying or withholding of the supposed cause of a condition and observing the result

 

A test of significance in dentistry, as in other fields of research, is a statistical method used to determine whether observed results are likely due to chance or if they are statistically significant, meaning that they are reliable and not random. It helps dentists and researchers make inferences about the validity of their hypotheses.

The procedure for conducting a test of significance typically involves the following steps:

1. Formulate a Null Hypothesis (H0) and an Alternative Hypothesis (H1): The null hypothesis is a statement that assumes there is no significant difference between groups or variables being studied, while the alternative hypothesis suggests that there is a significant difference. For example, in a dental study comparing two different toothpaste brands for their effectiveness in reducing plaque, the null hypothesis might be that there is no difference in plaque reduction between the two brands, while the alternative hypothesis would be that one brand is more effective than the other.

2. Choose a significance level (α): This is the probability of incorrectly rejecting the null hypothesis when it is true. Common significance levels are 0.05 (5%) or 0.01 (1%).

3. Determine the sample size: Depending on the research question, power analysis or literature review may help determine the appropriate sample size needed to detect a clinically significant difference.

4. Collect data: Gather data from a sample of patients or subjects under controlled conditions or from existing databases.

5. Calculate test statistics: This involves calculating a value that represents the magnitude of the difference between the observed data and what would be expected if the null hypothesis were true. Common test statistics include the t-test, chi-square test, and ANOVA (Analysis of Variance).

6. Determine the p-value: The p-value is the probability of obtaining the observed results or results more extreme than those observed if the null hypothesis were true. It is calculated based on the test statistic and the chosen significance level.

7. Compare the p-value to the significance level (α): If the p-value is less than the significance level, the result is considered statistically significant. If the p-value is greater than the significance level, the result is not statistically significant, and the null hypothesis is not rejected.

8. Interpret the results: Based on the p-value, make a decision about the null hypothesis. If the p-value is less than the significance level, reject the null hypothesis and accept the alternative hypothesis. If the p-value is greater than the significance level, fail to reject the null hypothesis.

Here is a simplified example of a test of significance applied to dentistry:

Suppose you are comparing two different toothpaste brands to determine if there is a significant difference in their effectiveness in reducing dental plaque. You conduct a study with 50 participants who are randomly assigned to use either brand A or brand B for a month. After a month, you measure the plaque levels of all participants.

1. Null Hypothesis (H0): There is no significant difference in plaque reduction between the two toothpaste brands.
2. Alternative Hypothesis (H1): There is a significant difference in plaque reduction between the two toothpaste brands.
3. Significance Level (α): 0.05

Now, let's say you collected the data and found that the mean plaque reduction for brand A was 25%, with a standard deviation of 5%, and for brand B, the mean was 30%, with a standard deviation of 4%. You could use an independent samples t-test to compare the two groups' means.

4. Calculate the t-statistic: t = (Mean of Brand B - Mean of Brand A) / (Standard Error of the Difference)
5. Find the p-value associated with the calculated t-statistic. If the p-value is less than 0.05, you reject the null hypothesis.

If the p-value is less than 0.05, you can conclude that there is a statistically significant difference in plaque reduction between the two toothpaste brands, supporting the alternative hypothesis that one brand is more effective than the other. This could lead to further research or a change in dental hygiene recommendations.

In dental applications, tests of significance are commonly used in studies examining the effectiveness of different treatments, materials, and procedures. For instance, they can be applied to compare the success rates of different types of dental implants, the efficacy of various tooth whitening methods, or the impact of oral hygiene interventions on periodontal health. Understanding the statistical significance of these findings allows dentists to make evidence-based decisions and recommendations for patient care.

Explore by Exams