Talk to us?

- NEETMDS- courses
NEET MDS Lessons
General Pathology

German measles (rubella)
 - sometimes called "three day measles".
 - incubation 14-21 days; infectious 7 days before the rash and 14 days after the onset of the rash.
 - in adults, rubella present with fever, headache, and painful postauricular Lymphadenopathy 1 to 2 days prior to the onset of rash, while in children, the rash is usually the first sign.
 - rash (vasculitis) consists of tiny red to pink macules (not raised) that begins on the head and spreads downwards and disappears over the ensuing 1-3 days; rash tends to become confluent.
 - 1/3rd of young women develop arthritis due to immune-complexes.
 - splenomegaly (50%) 

FUNGAL INFECTION

Aspergillosis

Opportunistic infections caused by Aspergillus sp and inhaled as mold conidia, leading to hyphal growth and invasion of blood vessels, hemorrhagic necrosis, infarction, and potential dissemination to other sites in susceptible patients.

Symptoms and Signs: Noninvasive or, rarely, minimally locally invasive colonization of preexisting cavitary pulmonary lesions also may occur in the form of fungus ball (aspergilloma) formation or chronic progressive aspergillosis.

Primary superficial invasive aspergillosis is uncommon but may occur in burns, beneath occlusive dressings, after corneal trauma (keratitis), or in the sinuses, nose, or ear canal.

Invasive pulmonary aspergillosis usually extends rapidly, causing progressive, ultimately fatal respiratory failure unless treated promptly and aggressively. A. fumigatus is the most common causative species.

 Extrapulmonary disseminated aspergillosis may involve the liver, kidneys, brain, or other tissues and is usually fatal. Primary invasive aspergillosis may also begin as an invasive sinusitis, usually caused by A. flavus, presenting as fever with rhinitis and headache

Viral meningitis
1. Can be caused by many different viruses, including cytomegalovirus, herpes virus, rabies, and HIV.
2. CSF fluid from a spinal tap differs from that seen in a bacterial infection. It shows mononuclear cells, higher levels of protein, and normal levels of glucose.

Psoriasis
1. Characterized by skin lesions that appear as scaly, white plaques.
2. Caused by rapid proliferation of the epidermis.
3. Autoimmune pathogenesis; exact mechanism is unclear.

Leukaemias
Uncontrolled proliferation of leukocyte precursors (may be with associated red cell and platelet series proliferation).

Factors which may playa causal role are.
- Viral
- Radiation.
- Genetic.

Classification

1. Acule leukaemia:

a. Lymphocytic (lymphoblastic).
b. Myelocytic and promyelocytic (myeloblastic).
c. Monocytic.
d. Myelomonocytic.
e. Undifferentiated (Stem cell).

2. Chronic leukaemia:

a. Lymphocytic
b. Myelocytic

3. Miscellaneous:
a. Erythroleukaemia (De Guglielmo's disease).
b. Eosinophilic leukaemia.
c. Megakaryocytic leukaemia.

Plasma Cell Pathology

A. Multiple myeloma

1. Plasma cell neoplasm that results in the proliferation of monoclonal plasma cells. These tumor cells produce nonfunctional immunoglobulins.

2. Laboratory findings include:

a. Monoclonal IgG spike.

b. Bence-Jones proteins found in urine.

3. Radiographic findings: characteristic “punched-out” radiolucencies in bones.

THROMBOSIS 
Pathogenesis (called Virchow's triad):
1. Endothelial* Injury ( Heart, Arteries)
2. Stasis
3. Blood Hypercoagulability

- Endothelial cells are special type of cells that cover the inside surface of blood vessels and heart.

CONTRIBUTION OF ENDOTHELIAL CELLS TO COAGULATION

Intact endothelial cells maintain liquid blood flow by: 

1- inhibiting platelet adherence
2- preventing coagulation factor activation
3- lysing blood clots that may form.

Endothelial cells can be stimulated by direct injury or by various cytokines that are produced during inflammation.

Endothelial injury results in:
1- expression of procoagulant proteins (tissue factor and vWF)→ local thrombus formation.
2- exposure of underlying vWF and basement membrane collagen  →  platelet aggregation and thrombus formation. 

RESPONSE OF VASCULAR WALL CELLS TO INJURY( PATHOLOGIC EFFECT OF VASCULAR HEALING) 

Injury to the vessel wall results in a healing response, involving:
- Intimal expansion (proliferating SMCs and newly synthesized ECM). This involves signals from ECs, platelets, and macrophages; and mediators derived from coagulation and complement cascades.

- luminal stenosis & blockage of vascular flow 

Causes of Endothelial injury
1. Valvulitis
2. MI
3. Atherosclerosis
4. Traumatic or inflammatory conditions
5. Increased Blood Pressure
6. Endotoxins
7. Hypercholesterolemia
8. Radiation
9. Smoking 

Stasis

- Stasis is a major factor in venous thrombi
- Normal blood flow is laminar (platelets flow centrally in the vessel lumen, separated from the endothelium by a slower moving clear zone of
plasma)
- Stasis and turbulence cause the followings:

Disuption of normal blood flow 
prevent dilution of activated clotting factor
retard inflow of clotting factor inhibitor
promote endothelial cell injury

Causes of Stasis
1. Atherosclerosis
2. Aneurysms
3. Myocardial Infarction ( Non-cotractile fibers)
4. Mitral valve stenosis (atrial dilation)
5. Hyper viscosity syndromes (PCV and Sickle Cell anemia)


Hypercoagulability
A. Genetic (primary):
- mutations in the factor V gene and the prothrombin gene are the most common
B. Acquired (secondary):
- multifactorial and more complicated 
- causes include: Immobilization, MI, AF, surgery, fracture, burns, Cancer, Prosthetic cardiac valves 

MORPHOLOGY OF THROMBI 

Can develop anywhere in the CVS (e.g., in cardiac chambers,  valves, arteries, veins, or capillaries).

Arterial or cardiac thrombi→ begin at sites of endothelial injury; and are usually superimposed on an atherosclerotic plaque. 

 Venous thrombi → occur at sites of stasis. Most commonly the veins of the lower extremities (90%)

 Thrombi are focally attached to the underlying vascular surface; arterial and venous thrombi both tend to propagate toward the heart.
→ The propagating portion of a thrombus is poorly attached → fragmentation and embolus formation

LINES OF ZAHN

Thrombi can have grossly (and microscopically) apparent laminations called lines of Zahn; these represent pale platelet and fibrin layers alternating with darker erythrocyte-rich layers. 

Such lines are significant in that they represent thrombosis of flowing blood. 

Mural thrombi = Thrombi occurring in heart chambers or in the aortic lumen.

Causes: -Abnormal myocardial contraction (e.g. arrhythmias, dilated cardiomyopathy, or MI) -endomyocardial injury (e.g. myocarditis, catheter trauma)

Vegetations ->Thrombi on heart valves 

1- Bacterial or fungal blood-borne infections - (infective endocarditis,). 

2- Non-bacterial thrombotic endocarditis occur on sterile valves.

Fate of thrombi 

1. Propagation → Thrombi accumulate additional platelets and fibrin, eventually causing vessel obstruction 

2. Embolization → Thrombi dislodge or fragment and are transported elsewhere in the vasculature 

3. Dissolution → Thrombi are removed by fibrinolytic activity (Usually in recent thrombi) 

4. Organization and recanalization → Thrombi induce inflammation and fibrosis. - recanalization (re-establishing some degree of flow) - Organization = ingrowth of endothelial cells, smooth cells and fibroblasts into the fibrin rich thrombus.

5. Superimposed infection (Mycotic aneurysm)

Venous thrombi → most common in veins of the legs 

a. Superficial: e.g. Saphenous veins. - can cause local congestion, swelling, pain, and tenderness along the course of the involved vein, but they rarely embolize

a. Deep: e.g. Popliteal, Femoral and iliac vein. - more serious because they may embolize - can occur with stasis or hypercoagulable states
 

Explore by Exams