Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Pharmacology

Antiemetics

 Antiemetic drugs are generally more effective in prophylaxis than treatment. Most antiemetic agents relieve nausea and vomiting by acting on the vomiting centre, dopamine receptors, chemoreceptors trigger zone (CTZ), cerebral cortex, vestibular apparatus, or a combination of these.
 
 Drugs used in the treatment of nausea and vomiting belong to several different groups. These include:
 
1. Phenothiazines, such as chlorpromazine, act on CTZ and vomiting centre, block dopamine receptors, are effective in preventing or treating nausea and vomiting induced by drugs, radiation therapy, surgery and most other stimuli (e.g. pregnancy).
They are generally ineffective in motion sickness.
Droperidol had been used most often for sedation in endoscopy and surgery, usually in combination with opioids or benzodiazepines

2. Antihistamines such as promethazine and Dimenhyrinate are especially effective in prevention and treatment of motion.

3. Metoclopramide has both central and peripheral antiemetic effects. Centrally, it antagonizes the action of dopamine. Peripherally metoclopramide stimulates the release of acetylcholine, which in turn, increases the rate of gastric. It has similar indications to those of chlorpromazine.

4. Scopolamine, an anticholinergic drug, is very effective in reliving nausea & vomiting associated with motion sickness.

5. Ondansetron, a serotonin antagonist, is effective in controlling chemical-induced vomiting and nausea such those induced by anticancer drugs. 

6. Benzodiazepines: The antiemetic potency of lorazepam and alprazolam is low. Their beneficial effects may be due to their sedative, anxiolytic, and amnesic properties

Drug-Receptor Interactions

Drug Receptor:  any functional macromolecule in a cell to which a drug binds to produce its effects.  at receptors, drugs mimic or block the action of the body's own regulatory molecules.  

Receptors and Selectivity of Drug Action : If a drug interacts with only one kind of receptor, and if that receptor regulates just a few processes, then the effects of the drug will be limited.

Even though a drug is selective for one type of receptor, it can still produce a variety of effects.

Selectivity does not guarantee safety.

Theories of Drug-Receptor Interaction

- Simple Occupancy Theory:  Two factors - The intensity of the response to a drug is proportional to the number of receptors occupied by that drug, and the maximal response will occur when all available receptors have been occupied.

- Modified Occupancy Theory:  Assumes that all drugs acting at a particular receptor are identical with respect to the ability to bind to the receptor and the ability to influence receptor function once binding has taken place.

•    Affinity:  The strength of the attraction between a drug and its receptor.  Affinity is reflected in potency.  (Drugs with high affinity are very potent).

•    Intrinsic Activity:  The ability of a drug to activate a receptor following binding.  Reflected in the maximal efficacy (drugs with high intrinsic activity have high maximal efficacy).

Classification

I) Esters

 1. Formed from an aromatic acid and an amino alcohol.

 2. Examples of ester type local anesthetics:

 Procaine

Chloroprocaine

Tetracaine

Cocaine

Benzocaine- topical applications only

2) Amides

 1. Formed from an aromatic amine and an amino acid.

 2. Examples of amide type local anesthetics:

Articaine

Mepivacaine

Bupivacaine

Prilocaine

Etidocaine

Ropivacaine

Lidocaine

Second Generation Cephalosporins

Prototype drug is CEFUROXIME (IV) and CEFUROXIME AXETIL (oral). CEFOXITIN has good activity vs. anaerobes.

1. Expanded activity against gram negative bacilli. Still have excellent activity against gram positive (Staph. and Strep.) bacteria.

Activity for Gram negative bacteria

Neisseria sp. (some gonococci resistant)
H. influenzae (including some ampicillin-resistant strains)
Moraxella catarrhalis (some resistance esp. to cefaclor)
E. coli
Proteus mirabilis
Indole + Proteus (some strains resistant)
Morganella morganii (some strains resistant)
Klebsiella pneumoniae
Serratia sp. (many strains resistant)

2. Anaerobic infections - CEFOXITIN & CEFOTETAN only

Moderate activity against Bacteroides fragilis group.

Good activity for other Bacteroides sp., Peptostreptococcus, Fusobacterium, Clostridium sp

Uses
1. Community-acquired pneumonia - Cefuroxime is widely used for empiric therapy. Has activity vs. many ampicillin-resistant H. influenzae strains.
2. Skin and soft tissue infection
3. Urinary tract infections
4. Upper respiratory tract infections (otitis media, sinusitis). Some resistance to H.influenzae to cefaclor (20-30%).
5. Mixed aerobic & anaerobic infections - Cefoxitin & Cefotetan. Resistance to B.fragilis is increasing.
6. Surgical prophylaxis - Cefoxitin or cefotetan are widely used in cases where mixed aerobic & anaerobic infections may occur, esp. intra-abdominal, colorectal, and gynecologic operations. For cardiovascular and orthopedic procedures, cefuroxime and others may be used, but cefazolin is cheaper and appears to work well.

Oxycodone  
About equal potency to morphine. Very effective orally.

It is combined with aspirin or acetaminophen for the treatment of moderate pain and is available orally

Oxycodone is a semisynthetic compound derived from thebaine, with agonist activity primarily at mu receptors.

Eicosanoid compounds

Prostaglandines, Leukotriens and Thromboxanes.

They are produced in minute amounts by all cells except RBCs and they act locally at the same site of synthesis.
These agents have many physiological processes as mediators and modulators of inflammatory reactions.

Ketoconazole

synthetic antifungal drug

used for infections such as  athlete's foot, ringworm, candidiasis (yeast infection or thrush), jock itch.

Ketoconazole is used to treat eumycetoma, the fungal form of mycetoma.

MOA: Ketoconazole is imidazole structured, and interferes with the fungal synthesis of  ergosterol, the main constituent of cell membranes, as well as certain enzymes. It is specific for fungi, as mammalian cell membranes contain no ergosterol.

Sensitive fungi Ketoconazole inhibits growth of  dermatophytes and  yeast species (such as Candida albicans).

Explore by Exams