NEET MDS Lessons
Anatomy
The Palate
- The palate forms the arched roof of the mouth and the floor of the nasal cavities.
- The palate consists of two regions: the anterior 2/3 or bony part, called the hard palate, and the mobile posterior 1/3 or fibromuscular part, known as the soft palate.
The Hard Palate
- The anterior bony part of the palate is formed by the palatine process of the maxillae and the horizontal plates of the palatine bones.
- Anteriorly and laterally, the hard palate is bounded by the alveolar processes and the gingivae.
- Posteriorly, the hard palate is continuous with the soft palate.
- The incisive foramen is the mouth of the incisive canal.
- This foramen is located posterior to the maxillary central incisor teeth.
- This foramen is the common opening for the right and left incisive canals.
- The incisive canal and foramen transmit the nasopalatine nerve and the terminal branches of the sphenopalatine artery.
- Medial to the third molar tooth, the greater palatine foramen pierces the lateral border of the bony palate.
- The greater palatine vessels and nerve emerge from this foramen and run anteriorly into two grooves on the palate.
- The lesser palatine foramen transmits the lesser palatine nerve and vessels.
- This runs to the soft palate and adjacent structures.
o English: all speech sounds produced by making exhaled air audible
o Two ways of producing sound
at larynx
further up in vocal tract (tongue, lips)
o How to produce sound at larynx
changes in breathing: regulate airstream from lungs to atmosphere by changing movements of vocal folds, pharynx, soft-palate, tongue, lips and jaws
• inhalation: take in greater volume more quickly, abduct folds
• expiration: variable force; use muscles of inhalation to control rate of expiration, adduct
How to vibrate vocal cords
• NOT rhythmic contraction of laryngeal muscles: would be impossible b/c frequenceies of virbration
• Changes in air pressure cause vibrations
o Adduct folds increase in subglottal pressure force folds apart folds sucked back together (Bernouilli effect)
• The vibration of vocal cords disturbs airareas of low pressure (rarefaction) alternating with areas of high pressure (compression)
• Changes in pressure sound at ears
• Sine waves
o Changes in amplitudes: loudness
o Changes in frequency: pitch
o Normal sounds have fundamental frequency, overtones or harmonics
o Mass of folds: critical in voice
Low pitch of lion’s roar: due to massive fibrous pad that forms part of vocal cords
Men: more massive vocal cords
Larger foldsslow vibrationdeeper voice
o Producing vowels and constants
Most vowels are “voiced”: vocal folds produce sounds
Consonants: can be “voiced” (Z) or “non-voiced” (S)
• Use higher regions of vocal tract to control by stopping, restricting airflow from vocal folds; use lips, teethaperiodic sound
o Vocal folds and resonators emphasize and deemphasize certain frequencies
Never hear sounds produced at vocal foldsevery sound changed by passage thru vocal tract: sinuses/resonating chambers
Howling monkeys: large hyoid bonepowerful resonator
o Age-related changes in voice
Infant larynx is smaller, different proportions
• Arytenoids are proportionately larger
• Smaller vocal apparatushigher pitch
• Larynx sits higher easier to breathe thru nose
Abrupt change in larynx at pubertycan’t control voice
Older adult: normal degenerative changes in lamina propria, ossification of thyroid cartilagechanges in fundamental frequency
Lose your voice vocal fold are irritated
• Can’t adduct foldsair escapes
o Singing v. speaking
Singing: greater thoracic pressure and uneven breathing with changes in resonators
o Whispering
Intercartilaginous portions of vocal folds: open to allow air to escapelesser subglottal pressureslittle vibration of foldslittle tonal quality, low volume
o Falsetto
Allowing only part of vocal folds to vibrate
Increase range by training which part of vocal folds to vibrate
o Colds
Mucus secretions add mass to folds—decrease in pitch, can’t adduct folds as well
o Surgeryscars, fibrotic changes can interfere with voice
Nerves of the Palate
- The sensory nerves of the palate, which are branches of the pterygopalatine ganglion, are the greater and lesser palatine nerves.
- They accompany the arteries through the greater and lesser palatine foramina, respectively.
- The greater palatine nerve supplies the gingivae, mucous membrane, and glands of the hard palate.
- The lesser palatine nerve supplies the soft palate.
- Another branch of the pterygopalatine ganglion, the nasopalatine nerve, emerges from the incisive foramen and supplies the mucous membrane of the anterior part of the hard palate.
ENDOCRINE
Endocrine glands have no ducts
They secrete into the blood from where the secretion (hormone) reaches a target cell
The following is a list of endocrine glands:
- Hypophysis
- Thyroid
- Parathyroid
- Adrenals
- Islets of Langerhans
- Pineal
- Gonads
Hypophysis: Develops from oral ectoderm and nerve tissue, The oral part forms an upgrowth with an invagination (Rathke's pouch) The nervous part grows from the floor of the diencephalon - staying intact .The oral part separates from the mouth
Ectoderm – adenohypophysis - pars tuberalis
- pars distalis
- pars intermedia .
Diencephalon – neurohypophysis - pars nervosa .
- infundibulum
- median eminence
Rathke's pouch remains as Rathke's cysts
Pars Distalis: Forms 75% of the gland, The cells form cords, with fenestrated capillaries in-between
2 Cell types:
Chromophobes : 50% of the cells, do not stain lie in groups, they are resting chromophils
granules have been used
Chromophils: Stain
They can be subdivided according to their reaction with different stains
Acidophils (40%) :Cells have acidophilic granules in their cytoplasm. The cells are secretory.
They have a well developed EPR and Golgi apparatus.They have secretory granules.
subdivided into:
- Somatotropin cells: secrete somatotropin (growth hormone)
- Mammotropic cells: secrete prolactin
Basophils (10%) : These cells have basophilic granules in their cytoplasm and can be subdivided into:
Thyrotropin cells: secrete thyroid - stimulating hormone (TSH)
Corticotrophin cells: secrete adrenocorticotropic (ACTH)
Gonadotropic cells: secrete two hormones: Follicle stimulating hormone (FSH):
Stimulate follicle development and spermatogenesis
Luteinizing hormone (LH): Stimulate the formation of the corpus luteum and Leydig cells
Pars Tuberalis: Cells lie around the infundibulum . It is continuous with the pars distalis
Cells are cuboidal with no granules. Their function is unknown
Pars Intermedia: Poorly developed in the human. Follicles lined by cuboidal cells and filled with colloid are found Known as Rathke's cysts .There are also a few big basophilic cells
Their function is unknown
Pars Nervosa: Contains: - myelinated axons pituicytes, blood vessels
Axons:
The cell bodies of the axons lie in the supra-optic and paraventricular nuclei of the hypothalamus .From the cell bodies the axons go through the infundibulum forming the hypothalamohypophyseal tract to end in the pars nervosa
The axons have dilated blind endings filled with hormones (Herring bodies) coming from the cell bodies.
Two hormones are secreted:
Oxytoxin: - Cause contraction of the uterus
- Cause contraction of the myoepithelial cells of the milkgland
- The hormone is secreted by the paraventricular nuclei
Vasopressin :- Cause reabsorption of H2O in the kidney (also known as antidiuretic hormone ADH) The hormone is secreted by the supraoptic nuclei. A hypophyseal portal system exists
A primary capillary plexus of fenestrated capillaries form around the median eminence. Inhibitory hormones are secreted into these capillaries
The capillaries rejoin to form the portal veins that traverse the pituitary stalk
The portal veins break up into a secondary capillary plexus which lies close to the cells of the adenohypophysis
This portal system regulates the functions of the anterior pituitary function.
Pineal
Surrounded by pia which sends septae into the gland Cells are mainly pinealocytes and astroglial cells
Pinealocytes:Irregular shaped cells. with processes ending in flattened dilatations
Have a well developed smooth surfaced endoplasmic reticulum, Also a rough EPR not well developed, Lots of microtubules
Astroglial Cells: Elongated nucleus, Cells have long processes, They perform a supporting function
Hormones:
Melatonin - secreted during the night .suppress the onset of puberty
Serotonin - secreted during the day
In humans the pineal form concretions of calcified material called brain sand
Brain sand vary in size and number with age and is visible on X-rays
Mast cells are also found in the pineal and cause the high histamine contend of the gland
THYROID
Has a CT capsule that sends septae into the gland to divide it up into incomplete lobes and lobules. In the lobules are follicles, Follicles vary in size, They are surrounded by surrounded by reticular CT and capillaries
Cells of the Follicle:
Follicular Cells : Single layer of cuboidal cells, lie around the colloid, Follicular cells can become columnar when very active, Nucleus central, EPR has wide cisternae ,Golgi present
- microvilli on the free surface
Parafollicular Cells: Also known as C-cells, Form part of the epithelium or form clusters between the follicles
- They never come into contact with the colloid
- Larger and stain less intensely than the follicular cells, Form 2% of the cells, Secrete calcitonin
Hormones: Thyroxine and thyriodothyronine - stimulate the metabolic rate, Calcitonin - lower the blood calcium
Parathyroid:
Has a CT capsule which send septae into the gland to divide it up into incomplete lobules, The CT contains fat which increase with age - may eventually be 50% of the gland, Glandular cells are arranged in cords
Glandular Cells:
Chief Cells: Small cells so their nuclei lie close together, Rich in glycogen, Biggest omponent
Secrete parathyroid hormone - essential for life
Oxyphil Cells:Develop at puberty, Bigger than the chief cells, Nuclei are smaller, Acidophilic
Hormones:
Parathyroid hormone - regulate calcium and phosphate ions in the blood
ADRENAL
- Thick CT capsule that do not send septae into the gland
Cortex:
Has 3 layers
Zona glomerulosa: 15% of the cortex, Directly under the capsule, Cells are columnar or pyramidal, Arranged in small groups or clusters, Wide fenestrated capillaries surround the clusters, Cells have an extensive smooth EPR
Zona Fasciculata: 78% of the cortex, Cells are arranged in cords ,1 to 2 cells wide perpendicular to the surface, Sinusoids lie between the cords, Cells are polyhedral with a central nucleus which is bigger than that of the zona glomerulosa, Lots of lipid in the cytoplasm cause the cells to stain lightly, Cells have a well developed smooth and rough EPR
The mitochondria in the cells are round with tubular or vesicular cristae
Zona Reticularis: 7% of the cortex, Cells form a network of cords with wide capillaries in-between The mitochondria in the cells are more ofte6n elongated than that in the zona fasciculate Degenerating cells with pyknotic nuclei are found. Cells contain numerous large lipofuscin granules. Cells of the cortex do not store their secretions but form and secrete on demand.
Hormones:
3 Groups:
Glucocorticoids (e.g. cortisol) - have an affection on carbohydrate metabolism
Mineralocorticoid (e.g. aldosterone) - control water and electrolyte balans
Androgens (e.g. dehyroepiandrosterone) - not very important
Medulla:
- Cells are big and oval and lie in groups and cords around bloodvessels
- Oxidising agents stain the granules in these cells brown - cells are therefore called chromaffin cells
- Granules contain adrenaline or non-adrernalin
- A few parasympathetic ganglion cells are also present
Hormones:
- Adrenaline - increase oxygen uptake
- increase blood pressure
- Noradrenaline - maintain blood pressure
Blood Supply:
- Blood vessel enter from the capsule to form the wide capillaries
- They flow into venules that form a central vein
- Between the endothelium of the capillaries and the glandular cells there is a subendothelial
- space.
- The glandular cells have microvilli protruding into this space.
ISLES OF LANGERHANS
Endocrine part of pancreas. The isles are round clusters in the exocrine tissue
- 100 - 200 µm
Islands consists of slightly stained polygonal or rounded cells, The cells are separated by fenestrated capillaries
- Autonomic nerve fibres innervate the blood vessels and the island cells
- 4 different cell types have been described
A cells : 20% of the cells, Bigger than B cells, Lie at the periphery, Have secretory granules ,Contain glucagon
B cells : 80%, Lie in the centre of the island, The cells are small with granules which are crystals, Granules are formed by insulin
D cells : Not numerous, Membrane bound granules, Store somatostatin (inhibit somatotropin)
F cells : Have membrane bound granules, Store pancreatic polypeptide, The hormone inhibits pancreatic exocrine secretion
Muscles of the Soft Palate
The Levator Veli Palatini (Levator Palati)
- Superior attachment: cartilage of the auditory tube and petrous part of temporal bone.
- Inferior attachment: palatine aponeurosis.
- Innervation: pharyngeal branch of vagus via pharyngeal plexus.
- This cylindrical muscle runs inferoanteriorly, spreading out in the soft palate, where it attaches to the superior surface of the palatine aponeurosis.
- It elevates the soft palate, drawing it superiorly and posteriorly.
- It also opens the auditory tube to equalise air pressure in the middle ear and pharynx.
The Tensor Veli Palatini (Tensor Palati)
- Superior attachment: scaphoid fossa of medial pterygoid plate, spine of sphenoid bone, and cartilage of auditory tube.
- Inferior attachment: palatine aponeurosis.
- Innervation: medial pterygoid nerve (a branch of the mandibular nerve).
- This thin, triangular muscle passes inferiorly, and hooks around the hamulus of the medial pterygoid plate.
- It then inserts into the palatine aponeurosis.
- This muscle tenses the soft palate by using the hamulus as a pulley.
- It also pulls the membranous portion of the auditory tube open to equalise air pressure of the middle ear and pharynx.
The Palatoglossus Muscle
- Superior attachment: palatine aponeurosis.
- Inferior attachment: side of tongue.
- Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
- This muscle, covered by mucous membrane, forms the palatoglossal arch.
- The palatoglossus elevates the posterior part of the tongue and draws the soft palate inferiorly onto the tongue.
The Palatopharyngeus Muscle
- Superior attachment: hard palate and palatine aponeurosis.
- Inferior attachment: lateral wall of pharynx.
- Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
- This thin, flat muscle is covered with mucous membrane to form the palatopharyngeal arch.
- It passes posteroinferiorly in this arch.
- This muscle tenses the soft palate and pulls the walls of the pharynx superiorly, anteriorly and medially during swallowing.
The Musculus Uvulae
- Superior attachment: posterior nasal spine and palatine aponeurosis.
- Inferior attachment: mucosa of uvula.
- Innervation: cranial part of accessory through the pharyngeal branch of vagus, via the pharyngeal plexus.
- It passes posteriorly on each side of the median plane and inserts into the mucosa of the uvula.
- When the muscle contracts, it shortens the uvula and pulls it superiorly.
Internal Muscles of the Pharynx
- The internal, chiefly longitudinal muscular layer, consists of 3 muscles: stylopharyngeus, palatopharyngeus, and salpingopharyngeus.
- They all elevate the larynx and pharynx during swallowing and speaking.
The Stylopharyngeus Muscle
- This is a long, thin, conical muscles that descends inferiorly between the external and internal carotid arteries.
- It enters the wall of the pharynx between the superior and middle constrictor muscles.
- Origin: styloid process of temporal bone.
- Insertion: posterior and superior borders of thyroid cartilage with palatopharyngeus muscle.
- Innervation: glossopharyngeal nerve (CN IX).
- It elevates the pharynx and larynx and expands the sides of the pharynx, thereby aiding in pulling the pharyngeal wall over a bolus of food.
The Palatopharyngeus Muscle
- This is a thin muscle and the overlying mucosa form the palatopharyngeal arch.
The Salpingopharyngeus Muscle
- This is a slender muscle that descends in the lateral wall of the pharynx.
- The over lying mucous membrane forms the salpingopharyngeal fold.
- Origin: cartilaginous part of the auditory tube.
- Insertion: blends with palatopharyngeus muscle.
- Innervation: through the pharyngeal plexus.
- It elevates the pharynx and larynx and opens the pharyngeal orifice of the auditory tube during swallowing.
Cardiac Muscle
Fibres anastomose through cross bridges
Fibres are short, connected end to end at intercalated discs, also striated, contract automatically
Light microscopic Structure:
Short fibres connected at intercalated disks, 85 - 100 µm long, 15 µm
same bands as in skeletal muscle, 1 or 2 nuclei - oval and central, in perinuclear area is a sarcoplasmic reticulum, intercalated discs lie at the Z line
Electron microscopic structure:
Between myofibrils lie the mitochondria, 2,5 µm long mitochondria, dense cristae
and are as long as the sarcomere, fibres have more glycogen than skeletal muscle fibres
myofilaments, actin and myosin are the same as in skeletal muscle, the sarcoplasmic reticulum differs in that there is no terminal sisterna. The sarcotubules end in little feet that
sit on the T-tubule
Intercalated Disc:
on Z lines, fibres interdigitate,
3 types of junctions in the disc
Transverse Part:
zonula adherens
desmosomes
Lateral Part:
Gap junctions (nexus) - for impulse transfer
Mechanism of Contraction:
slide - ratchet like in skeletal muscle, certain fibres are modified for conduction, Impulses spread from cell to cell through gap junctions, Purkinje cells are found in the AV bundle
they have less myofibrils, lots of glycogen and intercalated discs
Connective tissue coverings:
Only endomycium in cardiac muscle, Blood vessels, lymph vessels and nerves lie in the endomycium