NEET MDS Lessons
Anatomy
3 basic functions
o protection of respiratory tract during swallowing food/air pathways cross.
epiglottis provides protection
o control intra-thoracic pressure (in coughing) - close off airway to build pressure then rapidly open to release stuff
o production of sound (in speaking, singing, laughing)
Important structures
o hyoid bone
o thyroid cartilage
o arytenoids cartilage: vocal and muscle process
sits on slope on posterior side of cricoid - spin and slide
o cricoid cartilage: signet ring
o thyroepiglottic ligament
Membranes and ligaments
o membrane: general; ligament: thickening of membrane
o folds: free edges of membranes or ligaments
o names: tell you where located
Important membranes:
quandrangular/vestibular membrane—from epiglottis to arytenoids
• inferior edge: false vocal fold
thyrohyoid membrane
conus elasticus = cricothyroid = cricovocal
• superior/medial edge = vocal fold
• vocal ligaments: true folds, top of cricothyroid membrane
-> This is a wedge-shaped bone (G. sphen, wedge) is located anteriorly to the temporal bones.
-> It is a key bone in the cranium because it articulates with eight bones (frontal, parietal, temporal, occipital, vomer, zygomatic, palatine, and ethmoid).
-> It main parts are the body and the greater and lesser wings, which spread laterally from the body.
-> The superior surface of its body is shaped like a Turkish saddle (L. sella, a saddle); hence its name sella turcica.
-> It forms the hypophyseal fossa which contains the hypophysis cerebri or pituitary gland.
-> The sella turcica is bounded posteriorly by the dorsum sellae, a square plate of bone that projects superiorly and has a posterior clinoid process on each side.
-> Inside the body of the sphenoid bone, there are right and left sphenoid sinuses. The floor of the sella turcica forms the roof of these paranasal sinuses.
-> Studies of the sella turcica and hypophyseal fossa in radiographs or by other imaging techniques are important because they may reflect pathological changes such as a pituitary tumour or an aneurysm of the internal carotid artery. Decalcification of the dorsum sellae is one of the signs of a generalised increase in intracranial pressure.
The Hard Palate
- The anterior bony part of the palate is formed by the palatine process of the maxillae and the horizontal plates of the palatine bones.
- Anteriorly and laterally, the hard palate is bounded by the alveolar processes and the gingivae.
- Posteriorly, the hard palate is continuous with the soft palate.
- The incisive foramen is the mouth of the incisive canal.
- This foramen is located posterior to the maxillary central incisor teeth.
- This foramen is the common opening for the right and left incisive canals.
- The incisive canal and foramen transmit the nasopalatine nerve and the terminal branches of the sphenopalatine artery.
- Medial to the third molar tooth, the greater palatine foramen pierces the lateral border of the bony palate.
- The greater palatine vessels and nerve emerge from this foramen and run anteriorly into two grooves on the palate.
- The lesser palatine foramen transmits the lesser palatine nerve and vessels.
- This runs to the soft palate and adjacent structures.
Structure of the Nasal Septum
- This part bony, part cartilaginous septum divides the chamber of the nose into two narrow nasal cavities.
- The bony part of the septum is usually located in the median plane until age 7; thereafter, it often deviates to one side, usually the right.
- The nasal septum has three main components: (1) the perpendicular plate of the ethmoid bone; (2) the vomer, and (3) the septal cartilage.
- The perpendicular plate, which forms the superior part of the septum, is very thin and descends from the cribiform plate of the ethmoid bone.
- The vomer, which forms the posteroinferior part of the septum, is a thin, flat bone. It articulates with the sphenoid, maxilla and palatine bones.
Cardiac Muscle
Fibres anastomose through cross bridges
Fibres are short, connected end to end at intercalated discs, also striated, contract automatically
Light microscopic Structure:
Short fibres connected at intercalated disks, 85 - 100 µm long, 15 µm
same bands as in skeletal muscle, 1 or 2 nuclei - oval and central, in perinuclear area is a sarcoplasmic reticulum, intercalated discs lie at the Z line
Electron microscopic structure:
Between myofibrils lie the mitochondria, 2,5 µm long mitochondria, dense cristae
and are as long as the sarcomere, fibres have more glycogen than skeletal muscle fibres
myofilaments, actin and myosin are the same as in skeletal muscle, the sarcoplasmic reticulum differs in that there is no terminal sisterna. The sarcotubules end in little feet that
sit on the T-tubule
Intercalated Disc:
on Z lines, fibres interdigitate,
3 types of junctions in the disc
Transverse Part:
zonula adherens
desmosomes
Lateral Part:
Gap junctions (nexus) - for impulse transfer
Mechanism of Contraction:
slide - ratchet like in skeletal muscle, certain fibres are modified for conduction, Impulses spread from cell to cell through gap junctions, Purkinje cells are found in the AV bundle
they have less myofibrils, lots of glycogen and intercalated discs
Connective tissue coverings:
Only endomycium in cardiac muscle, Blood vessels, lymph vessels and nerves lie in the endomycium
- The forehead is formed by the smooth, broad, convex plate of bone called the frontal squama.
- In foetal skulls, the halves of the frontal squama are divided by a metopic suture.
- In most people, the halves of the frontal bone begin to fuse during infancy and the suture between is usually not visible after 6 years of age.
- The frontal bone forms the thin roof of the orbits (eye sockets).
- Just superior to and parallel with each supraorbital margin is a bony ridge, the superciliary arch, which overlies the frontal sinus. This arch is more pronounced in males.
- Between these arches there is a gently, rounded, medial elevation called the gabella; this term derives from the Latin word glabellus meaning smooth and hairless. In most people, the skin over the gabella is hairless.
-The slight prominences of the forehead on each side, superior to the superciliary arches, are called frontal eminences (tubers).
- The supraorbital foramen (occasionally a notch), which transmits the supraorbital vessels and nerve is located in the medial part of the supraorbital margin.
- The frontal bone articulates with the two parietal bones at the coronal suture.
-It also articulates with the nasal bones at the frontonasal suture. At the point where this suture crosses the internasal suture in the medial plane, there is an anthropological landmark called the nasion . The depression is located at the root of the nose, where it joins the cranium.
- The frontal bone also articulates with the zygomatic, lacrimal, ethmoid, and sphenoid bones.
In about 8% of adult skulls, a remnant of the inferior part of the metopic (interfrontal) suture is visible. It may be mistaken in radiographs for a fracture line by inexperienced observers.
- The superciliary arches are relatively sharp ridges of bone and a blow to them may lacerate the skin and cause bleeding.
- Bruising of the skin over a superciliary arch causes tissue fluid and blood to accumulate in the surrounding connective tissue, which gravitates into the upper eyelid and around the eye. This results in swelling and a "black eye".
- Compression of the supraorbital nerve as it emerges from its foramen causes considerable pain, a fact that may be used by anaesthesiologists and anaesthetists to determine the depth of anaesthesia and by physicians attempting to arouse a moribund patient.
Muscles Around the Mouth
- The sphincter of the mouth is orbicularis oris and the dilator muscles radiate outward from the lips like the spokes of a wheel.
Orbicularis Oris Muscle
- This muscle encircles the mouth and is the sphincter of the oral aperture
- This muscle (1) closes the lips, (2) protrudes them and (3) compresses them against the teeth.
- It plays an important role in articulation and mastication. Together with the buccinator muscle, it helps to hold the food between the teeth during mastication.
Zygomaticus Major Muscle
- It extends from the zygomatic bone to the angle of the mouth.
- It draws the corner of the moth superolaterally during smiling and laughing.
Zygomaticus Minor Muscle
- This is a narrow slip of muscle, and passes obliquely from the zygomatic bone to the orbicularis oris.
- It helps raise the upper lip when showing contempt or to deepen the nasolabial sulcus when showing sadness.
The Buccinator Muscle
- This is a thin, flat, rectangular muscle.
- It is attached laterally to the alveolar processes of the maxilla and mandible, opposite the molar teeth and the pterygomandibular raphe.
- Medially, its fibres mingle with those of orbicularis oris.Innervation: the buccal branch of facial.
- It aids mastication and swallowing by pushing the cheeks against the molar teeth during chewing.