Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Anatomy

The Nasal Mucosa

  • Mucosa lines the entire nasal cavities except for the vestibule of the nose.
  • The nasal mucosa is firmly bound to the periosteum and perichondrium of the supporting structures of the nose.
  • It is continuous with the adjoining cavities to which the nasal cavity communicates (e.g., the nasopharynx and paranasal sinuses).
  • The inferior 2/3 of the nasal mucosa is called the respiratory area and air passing over this is warmed and moistened before it passes into the lungs.
  • The superior 1/3 is called the olfactory area.

The Olfactory Area of Nasal Mucosa

  • This area contains the peripheral organ of smell.
  • Sniffing draws air into this area
  • Olfactory receptor cells (from the olfactory nerve, CN I, are located in the mucosa of this area in the nose.

Nerves to the Respiratory Area of Nasal Mucosa

  • The inferior 2/3 of the nasal mucosa are supplied chiefly by the trigeminal nerve (CN V).
  • The mucous membrane of the nasal septum is supplied chiefly by the nasopalatine nerve, a branch of the maxillary nerve (CN V2).
  • Its anterior portion is supplied by the anterior ethmoidal nerve (a branch of the nasociliary nerve) which is derived from the ophthalmic nerve (CN V1).
  • The lateral walls of the nasal cavity are supplied by branches of the maxillary nerve (CN V2); the greater palatine nerve, and the anterior ethmoidal nerve.

Arteries of the Nasal Mucosa

  • The blood supply of the mucosa of the nasal septum is derived mainly from the maxillary artery.
  • The sphenopalatine artery, a branch of the maxillary, supplies most of the blood of the nasal mucosa.
  • It enters by the sphenopalatine foramen and sends branches to the posterior regions of the lateral wall and to the nasal septum.
  • The greater palatine artery, also a branch of the maxillary, passes through the incisive foramen to supply the nasal septum.
  • The anterior and posterior ethmoidal arteries, branches of the ophthalmic artery, supply the anterosuperior part of the mucosa of the lateral wall of the nasal cavity and nasal septum.
  • Three branches of the facial artery (superior labial, ascending palatine, and lateral nasal) also supply the anterior parts of the nasal mucosa.

Veins of the Nasal Mucosa

  • The veins of the nasal mucosa form a venous network of plexus in the connective tissue of the nasal mucosa.
  • Some of the veins open into the sphenopalatine vein and drain to the pterygoid plexus.
  • Others join the facial and infraorbital veins.
  • Some empty into the ophthalmic veins and drain into the cavernous sinus.

Nerves of the Palate

  • The sensory nerves of the palate, which are branches of the pterygopalatine ganglion, are the greater and lesser palatine nerves.
  • They accompany the arteries through the greater and lesser palatine foramina, respectively.
  • The greater palatine nerve supplies the gingivae, mucous membrane, and glands of the hard palate.
  • The lesser palatine nerve supplies the soft palate.
  • Another branch of the pterygopalatine ganglion, the nasopalatine nerve, emerges from the incisive foramen and supplies the mucous membrane of the anterior part of the hard palate.

 

Vessels of the Palate

  • The palate has a rich blood supply from branches of the maxillary artery.

LYMPHOID SYSTEM

Consists of cells, tissues and organs

Protects the body against damage by foreign substances

Immuno competent cells in the lymphoid system distinguish between the bodies own molecules and foreign molecules.

The response is immunity.

lymphoid tissues have a: - reticular framework (collagen III) consisting of:  reticular cells , (indistinguishable from fibroblasts) , lymphocytes, macrophages,  antigen presenting cells, plasma cells

Each organ has special features:

Capsulated – spleen, lymph nodes, thymus

Unencapsulated – tonsils,  Peyers patches. lymphoid nodules in: - alimentary canal

- Nodules in: respiratory tract,  urinary tract, reproductive tracts

2 Types of immunity:

- Cellular: Macrophages - destroy foreign cells

- Humeral – immunoglobulins and antibodies (glycoproteins) interact with foreign substances

- cellular and humeral immune system require accessory cells like: macrophages, antigen presenting cells

 

Thymus

Lymphocytes develop from mesenchym. The lymphocytes then invade an epithelial premordium .The epithelial cells are pushed apart by lymphocytes. Epithelial cells remain connected through desmosomes to form the epithelial reticular cells.  Septae from the capsule divide the thymus up into incomplete lobules (0,5-2 mm ). Each lobule has a cortex which is packed with lymphocytes. In the middle of the lobule is the lighter staining medulla. The cortex and medulla are continuous. Hassall's corpuscles, consisting of flat epithelial cells, lie in the medulla .The corpuscles increase in size and number through life

Thymus cells:

- Cortex and medulla have the same cells – only their proportions differ

- The predominant cell is the T lymphocytes and precursors

- There are also epithelial reticular cells with large oval nuclei. The cells are joined by desmosomes.

- A few mesenchymal reticular cells are also present.

- There are many macrophages.

Cortex:

- Only capillaries (no other vessels)

- small lymphocytes predominate

- here they do not form nodules

- epithelial cells surround groups of lymphocytes and blood vessels

- around the capillary is a space

- forms blood thymus barrier

- Layers of the blood thymus barrier:

- capillary wall endothelium

basal lamina

little CT with macrophages

- epithelial reticular cells - basal lamina

- cytoplasm of epithelial reticular cells

Medulla:

- Stains light because of many epithelial reticular cells

- 5% of thymic lymphocytes found in medulla

- mature lymphocytes - smaller than that of cortex

- leave through venules to populate organs such as the spleen and lymph nodes

- In the medulla the covering of capillaries by epithelial reticular cells is incomplete - no barrier

- Hassall's corpuscles

- 30 - 150µm .

- consists of layers of epithelial reticular cells

- the central part of the corpuscle may only be cell remnants

- unknown function

 

Lymph nodes

- Encapsulated

- found throughout the body

- form filters in the lymph tracts

- lymph penetrate through afferent lymph vessels on the convex surface

- exit through efferent lymph vessels of the hilum

- capsule send trabeculae into the node to divide it up into incomplete compartments

- reticular tissue provide the super structure

- under the capsule is a cortex – the cortex is absent at the hilum

- At the centre of the node and at the hilum is a medulla

- The cortex has a subcapsular sinus and peritrabecular sinuses

The sinuses:-

- Incompletely lined by reticular cells

- Have numerous macrophages

- fibres cross the sinuses

- they slow the flow of lymph down -

- so that the macrophages can get a chance to perform their function.

Primary and secondary lymphoid nodules

- Some lymphocytes in the cortex form spherical aggregations 0,2-1 mm Ø called primary nodules (or follicles)

- They contain mainly B lymphocytes but some T- lymphocytes are also present

- A germinal centre may develop in the middle of the nodule when an antigen is present. The nodule then becomes a secondary nodule, which is:

- light staining in the centre because:

- many B lymphocytes increase in size to become plasmablasts

- plasmablasts undergo mitosis to become plasmacytes

- plasmacytes migrate to the follicular periphery and then to the medullary cords where they mature

into plasma cells that secrete antibodies into the efferent lymph.

- lymphocytes that don’t differentiate into plasma cells remain small lymphocytes and are called memory

cells – which migrate to different parts of the body

- memory cells are capable of mounting a rapid humoral response on subsequent contact with the same antigen.

- In the nodules there are also follicular dendritic cells which are:

- non phagocytic

- with cytoplasmic extensions

- trap antigens on their surface

- present it to B and T lymphocytes which then respond

Paracortical Zone

- Between adjacent nodules and between the nodules and the medulla are loosely arranged lymphocytes which form the paracortical area or deep cortical area.

- The main cell type in this area is the T lymphocyte.

- They enter the lymph node with the blood and migrate into the paracortical zone.

- T lymphocytes are stimulated when presented with an antigen by the follicular dendritic cells.

- They transform into large lymphobasts which undergo mitosis to produce activated T lymphocytes.

- These activated T lymphocytes must go to the area of antigen stimulation to perform its function.

- When this happens the paracortex expand greatly.

- Later they join the efferent lymph to leave the lymph node.

- These lymphocytes disappear when the thymus is removed - especially if done at birth

 

The medulla

- Consists of medulla with branching cords separated by medullary sinusses.

- Througout the medulla are trabeculae.

- The cords contain numerous B lymphocytes and plasma cells.

- A few macrophages and T lymphocytes may also be present.

- Receive and circulate lymph from the cortical sinuses.

- Medullary sinuses communicate with efferent lymph vessels.

 

Spleen

- Largest lymphatic organ

- Many phagocytic cells

- Filters blood

- Form activated lymphocytes which go into the blood

- Form antibodies

General structures:

- Dense CT capsule with a few smooth muscle fibres encapsulate the spleen

- The capsule is thickened at the hilum.

- Trabeculae from the hilum carry blood vessels and nerves in and out of the spleen.

- The capsule divide the spleen into incomplete compartments.

- The spleen has no lymph vessels because it is a blood filter and not a lymph filter like the lymph nodes.

Splenic pulp

- The lymph nodules are called the white pulp

- The white pulp lies in dark red tissue called red pulp

- Red pulp is composed of splenic cords (Billroth cords) which lie between sinusoids

- Reticular tissue forms the superstructure for the spleen and contains:

- reticular cells

- macrophages

Blood circulation

- The splenic artery divide as it enters the hilum

- The arteries in the trabeculae are called trabecular arteries

- The trabecular arteries give of braches into the white pulp (central arteries).

- The artery may not lie in center but is still called a central artery.

- The central arteries give off branches to the white pulp which go through the white pulp to end in the marginal sinuses on the perimeter of the white pulp.

- The central artery continues into the red pulp (called the pulp artery) where it branches into straight arteries called penicilli.

- The penicilli continue as arterial capillaries some of which are sheated by macrophages.

- The blood from the arterial capillaries flow into the red pulp sinuses that lie between the red pulp cords.

- The way the blood gets from the capillaries into the sinuses is uncertain. It can either:

- Flow directly into the sinuses - closed theory

- Or flow through the spaces between the red pulp cord cells and then enter the sinusoid - open theory.

- Presently the open theory is popular.

- From the sinusoids the blood flow into the: - Red pulp veins

- which join the trabecular veins

- to form form the splenic vein

(Trabecular veins form channels without a wall lined by endothelium in the trabeculae.)

White pulp:

- Forms a lymph tissue sheath around the central artery

- The lymphocytes around the central artery is called the periarterial lymphatic sheath (PALS).

- Which contains mainly T lymphocytes

- So the PALS is chracterized by a central artery.

- True nodules may also be present as an extension of the PALS.

- They displace the central artery so that it lies eccentric.

- Nodules normally have a germinal center and consists mainly of B lymphocytes

- Between the red and white pulp there is a marginal zone consisting of:

- Many sinuses and of  loose lymphoid tissue.

- There are few lymphocytes

- many macrophages

- lots of blood antigens which

- play a major role in immunologic activity.

Red Pulp:

- In the fresh state this tissue has a red colour because of the many erythrocytes.

- Red pulp consists of splenic sinusses separated by splenic cords (cords of Billroth).

- Between reticular cells are macrophages, lymphocytes, granulocytes and plasma cells.

- Many of the macrophages are in the process of phagocytosing damaged erythrocytes.

- The splenic sinusoids are special sinusoidal vessels in the following ways:

- It has a dilated large irregular lumen

- Spaces between unusually shaped endothelial cells permit exchange between sinusoids and adjacent tissues. (The endothelial cells are very long arranged parallel to the direction of the vessel)

- The basal lamina of the sinusoid is not continuous but form rings.

 

Tonsils

- Tonsils are incompletely encapsulated lymphoid tissues

- There are - Palatine tonsils

- pharyngeal tonsils

- lingual tonsils

 

Palatine Tonsil

- Contains dense lymphoid tissue.

- Covered by stratified squamous non-keratinized epithelium

- with an underlying CT capsule

- Crypts that enter the tissue end blind.

 

Lingual Tonsil

- Lie on the posterior 1/3 of the tongue.

- Crypts link up with underlying glands that flush them.

- Epithelial covering is the same as that of the palatine tonsil.

 

Appendicular Skeleton
Upper extremity
•    Shoulder-clavicle and scapula

Clavicle
    Articulates with the manubrium at the sternal end
    Articulates with the scapula at the lateral end
    Slender S-shaped bone that extends horizontally across the upper part of the thorax
    
Scapula

    Triangular bone with the base upward and the apex downward
    Lateral aspect contains the glenoid cavity that articulates with the head of the humerus
    Spine extends across the upper part of the posterior surface; expands laterally and
    forms the acromion (forms point of shoulder) 
    Coracoid process projects anteriorly from the upper part of the neck of the scapula
    
Arm (humerus)

Consists of a shaft (diaphysis) and two ends (epiphyses)
Proximal end has a head that articulates with the glenoid fossa of the scapula
Greater and lesser tubercles lie below the head

Intertubercular groove is located between them; long tendon of the biceps attaches here
Surgical neck is located below the tubercles

    o    Radial groove runs obliquely on the posterior surface; radial nerve is located here

    o    Deltoid muscles attaches in a V-shaped area in the middle of the shaft. called the deltoid tuberosity
    
Distal end has two projections. the medial and lateral epicondyles
Capitulum-articulates with the radius
Trochlea-articulates with the ulqa

Forearm

Radius
Lateral bone of the forearm
Radial tuberosity is located below the head on the medial side
Distal end is broad for articulation with the wrist: has a styloid process on its lateral side

Ulna

    Medial side of the forearm
    Conspicuous part of the elbow joint (olecranon)
    Curved surface that articulates with the trochlea of the humerus is the trochlearnotch
    Lateral ide is concave (radial notch); articulates with the head of the radius Distal end contains the styloid process 
    Distal end contains the styloid process

Hand

Carpal bones (8)
    Aranged in two rows of four
    Scaphoid. lunate. triquetral. and pisiform  proximal row); trapezium. trapezoid.
    capitate. and hamate (distal row)
    
Metacarpal bones (5)
    Framework of the hand
    Numbered 1 to 5 beginning on the lateral side
    
Phalanges (14)
    Fingers
     Three phalanges in each finger; two phalanges in the thumb

 

  • The palate has a rich blood supply from branches of the maxillary artery.

Mesodermal Origin

Muscles

Innervation

Somitomeres 1, 2

Superior, medial and ventral recti

Oculomotor (III)

Somitomere 3

Superior oblique

Trochlear (IV)

Somitomere 4

Jaw-closing muscles

Trigeminal (V)

Somitomere 5

Lateral rectus

Abducens (VI)

Somitomere 6

Jaw-opening and other 2nd arch muscles

Facial (VII)

Somitomere 7

Stylopharyngeus

Glossopharyngeal (IX)

Somites 1, 2

Intrinsic laryngeals

Vagus (X)

Somites 2-5

Tongue muscles

Hypoglossal (XII)

  • Skull 
    Cranium
    o    Superior portion formed by the frontal. parietal, and occipital bones
    o    Lateral portions formed by the temporal and sphenoid bones
    o    Cranial base formed by the temporal. sphenoid, and ethmoid bones
    o    Fontanels-soft spots in which ossification is incomplete at birth

    Frontal bone
    o    Forms the forehead
    o    Contains the frontal sinuses
    o    Forms the roof of the orbits
    o    Union with the parietal bones forms the coronal suture

    Parietal bones
    o    Union with the occipital bone forms the lambdoid suture
    o    Union with the temporal bone forms the squamous suture
    o    Union with the sphenoid bone forms the coronal suture

    Temporal bones
    o    Contains the external auditory meatus and middle and inner ear structures
    o    Squamous portion-above the meatus: zygomatic process-articulates with the zygoma
    o    to form the zygomatic arch 

    •    Petrous portion
    o    Contains organs of hearing and equilibrium 
    o    Prominent elevation on the floor of the cranium

    •    Mastoid portion
    o    Protuberance behind the ear

    o    Mastoid process
    •    Glenoid fossa-articulates with the condyle on the mandible
    •    Styloid process-anterior to the mastoid process; several neck muscles attach here
    •    Stylomastoid foramen-located between the styloid and mastoid processes; facial nerve emerges through this opening
    •    Jugular foramen-located between the petrous portion and the occipital bone: cranial nerves IX. X, and XI exit
     

 

Explore by Exams