NEET MDS Lessons
Anatomy
Muscles Moving the Auditory Ossicles
The Tensor Tympani Muscle
- This muscle is about 2 cm long.
- Origin: superior surface of the cartilaginous part of the auditory tube, the greater wing of the sphenoid bone, and the petrous part of the temporal bone.
- Insertion: handle of the malleus.
- Innervation: mandibular nerve (CN V3) through the nerve to medial pterygoid.
- The tensor tympani muscle pulls the handle of the malleus medially, tensing the tympanic membrane, and reducing the amplitude of its oscillations.
- This tends to prevent damage to the internal ear when one is exposed to load sounds.
The Stapedius Muscle
- This tiny muscle is in the pyramidal eminence or the pyramid.
- Origin: pyramidal eminence on the posterior wall of the tympanic cavity. Its tendon enters the tympanic cavity by traversing a pinpoint foramen in the apex of the pyramid.
- Insertion: neck of the stapes.
- Innervation: nerve to the stapedius muscle, which arises from the facial nerve (CN VII).
- The stapedius muscle pulls the stapes posteriorly and tilts its base in the fenestra vestibuli or oval window, thereby tightening the anular ligament and reducing the oscillatory range.
- It also prevents excessive movement of the stapes.
Superior Constrictor Muscle
- Origin: Hamulus, pterygo-mandibular raphe, and mylohyoid line of the mandible.
- Insertion: Median raphe of the pharynx.
- Nerve Supply: Vagus nerve via the pharyngeal plexus.
- Arterial Supply: Ascending pharyngeal artery, ascending palatine artery, tonsillar branch of the facial artery, and dorsal branch of the lingual artery.
- Action: Constricts the wall of the pharynx during swallowing.
-
Articulations
Classified according to their structure, composition,and movability
• Fibrous joints-surfaces of bones almost in direct contact with limited movement
o Syndesmosis-two bones united by interosseous ligaments
o Sutures-serrated margins of bones united by a thin layer of fibrous tissue
o Gomphosis-insertion of a cone-shaped process into a socket• Cartilaginous joints-no joint cavity and contiguous bones united by cartilage
o Synchondrosis-ends of two bones approximated by hyaline cartilage
o Symphyses-approximating bone surfaces connected by fibrocartilage• Synovial joints-approximating bone surfaces covered with cartilage; may be separated by a disk; attached by ligaments
o Hinge-permits motion in one plane only
o Pivot-permits rotary movement in which a ring rotates around a central axis
o Saddle-opposing surfaces are convexconcave. allowing great freedom of motion
o Ball and socket - capable of movement in an infinite number of axes; rounded head of one bone moves in a cuplike cavity of the approximating boneBursae
• Sacs filled with synovial fluid that are present where tendons rub against bone or where skjn rubs across bone
• Some bursae communicate with a joint cavity
• Prominent bursae found at the elbow. hip, and knee'Movements
• Gliding
o Simplest kind of motion in a joint
o Movement on a joint that does not involve any angular or rotary motions
• Flexion-decreases the angle formed by the union of two bones
• Extension-increases the angle formed by the union of two bones
• Abduction-occurs by moving part of the appendicular skeleton away from the median plane of the body
• Adduction-occurs by moving part of the appendicular skeleton toward the median plane of the body
• Circumduction
o Occurs in ball-and-socket joints
o Circumscribes the conic space of one bone by the other bone
• Rotation-turning on an axis without being displaced from that axis
Muscles of the Soft Palate
The Levator Veli Palatini (Levator Palati)
- Superior attachment: cartilage of the auditory tube and petrous part of temporal bone.
- Inferior attachment: palatine aponeurosis.
- Innervation: pharyngeal branch of vagus via pharyngeal plexus.
- This cylindrical muscle runs inferoanteriorly, spreading out in the soft palate, where it attaches to the superior surface of the palatine aponeurosis.
- It elevates the soft palate, drawing it superiorly and posteriorly.
- It also opens the auditory tube to equalise air pressure in the middle ear and pharynx.
The Tensor Veli Palatini (Tensor Palati)
- Superior attachment: scaphoid fossa of medial pterygoid plate, spine of sphenoid bone, and cartilage of auditory tube.
- Inferior attachment: palatine aponeurosis.
- Innervation: medial pterygoid nerve (a branch of the mandibular nerve).
- This thin, triangular muscle passes inferiorly, and hooks around the hamulus of the medial pterygoid plate.
- It then inserts into the palatine aponeurosis.
- This muscle tenses the soft palate by using the hamulus as a pulley.
- It also pulls the membranous portion of the auditory tube open to equalise air pressure of the middle ear and pharynx.
The Palatoglossus Muscle
- Superior attachment: palatine aponeurosis.
- Inferior attachment: side of tongue.
- Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
- This muscle, covered by mucous membrane, forms the palatoglossal arch.
- The palatoglossus elevates the posterior part of the tongue and draws the soft palate inferiorly onto the tongue.
The Palatopharyngeus Muscle
- Superior attachment: hard palate and palatine aponeurosis.
- Inferior attachment: lateral wall of pharynx.
- Innervation: cranial part of accessory nerve (CN XI) through the pharyngeal branch of vagus (CN X) via the pharyngeal plexus.
- This thin, flat muscle is covered with mucous membrane to form the palatopharyngeal arch.
- It passes posteroinferiorly in this arch.
- This muscle tenses the soft palate and pulls the walls of the pharynx superiorly, anteriorly and medially during swallowing.
The Musculus Uvulae
- Superior attachment: posterior nasal spine and palatine aponeurosis.
- Inferior attachment: mucosa of uvula.
- Innervation: cranial part of accessory through the pharyngeal branch of vagus, via the pharyngeal plexus.
- It passes posteriorly on each side of the median plane and inserts into the mucosa of the uvula.
- When the muscle contracts, it shortens the uvula and pulls it superiorly.
Muscles acting on the Temporomandibular Joint
- Movements of the temporomandibular joint are chiefly from the action of the muscles of mastication.
- The temporalis, masseter, and medial pterygoid muscles produce biting movements.
- The lateral pterygoid muscles protrude the mandible with the help from the medial pterygoid muscles and retruded largely by the posterior fibres of the temporalis muscle.
- Gravity is sufficient to depress the mandible, but if there is resistance, the lateral pterygoid, suprahyoid and infrahyoid, mylohyoid and anterior digastric muscles are activated.
Actions | Muscles | |||
Depression (Open mouth) |
|
|||
Elevation (Close mouth) |
|
|||
Protrusion (Protrude chin) |
|
|||
Retrusion (Retrude chin) |
|
|||
Side-to-side movements (grinding and chewing) |
|
-> This is a wedge-shaped bone (G. sphen, wedge) is located anteriorly to the temporal bones.
-> It is a key bone in the cranium because it articulates with eight bones (frontal, parietal, temporal, occipital, vomer, zygomatic, palatine, and ethmoid).
-> It main parts are the body and the greater and lesser wings, which spread laterally from the body.
-> The superior surface of its body is shaped like a Turkish saddle (L. sella, a saddle); hence its name sella turcica.
-> It forms the hypophyseal fossa which contains the hypophysis cerebri or pituitary gland.
-> The sella turcica is bounded posteriorly by the dorsum sellae, a square plate of bone that projects superiorly and has a posterior clinoid process on each side.
-> Inside the body of the sphenoid bone, there are right and left sphenoid sinuses. The floor of the sella turcica forms the roof of these paranasal sinuses.
-> Studies of the sella turcica and hypophyseal fossa in radiographs or by other imaging techniques are important because they may reflect pathological changes such as a pituitary tumour or an aneurysm of the internal carotid artery. Decalcification of the dorsum sellae is one of the signs of a generalised increase in intracranial pressure.
- The six muscles rotate the eyeball in the orbit around three axes (sagittal, horizontal and vertical).
- The action of the muscles can be deduced by their site of insertion on the eyeball.
Muscle | Action(s) on the Eyeball | Nerve Supply |
Medial Rectus | Adducts | CN III |
Lateral Rectus | Abducts | CN VI |
Superior Rectus | Elevates, adducts, and medially rotates | CN III |
Inferior Rectus | Depresses, adducts, and laterally rotates | CN III |
Superior Oblique | Depresses, abducts, and medially rotates | CN IV |
Inferior Oblique | Elevates, abducts, and laterally rotates | CN III |