Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Anatomy

  • Ossification

  • Intramembranous-found in the flat bones of the face
    • Mesenchymal cells cluster and form strands
    • Strands are cemented in a uniform network. Which is known as osteoid
    • Calcium salts are deposited; osteoid is converted to bone
    • Trabeculae are formed and make cancellous bone with open spaces known as marrow cavities
    • Periosteum forms on the inner and outer surfaces of the ossification centers
    • Surface bone becomes compact bone
  • Endochondral-primary type of ossification In the human

Tongue 
Appears at 4th week.
Musculature derived from mesoderm of occipital somites.  Precursor muscles cells migrate to region of tongue and are innervated by general sensory efferent fibers of CN XII.
Mucosa derived from anterior endoderm lining arches 1-4; accordingly, innervation depends on arch derivation:
              Mucosa of anterior 2/3 of tongue comes from the first arch -> CN V
              Mucosa of posterior 1/3 of tongue comes from third and forth arch -> CN IX, X
Special taste of anterior 2/3 of tongue comes from CN VII.
Special taste of posterior 1/3 of tongue comes from CN X.
Tongue freed from floor of mouth by extensive degeneration of underlying tissue.  Midline frenulum continues to anchor tongue to floor of mouth.

Thyroid Gland

Develops as in growth of mucosal epithelium located in the midline of the tongue (at foramen cecum).  It descends along front of pharyngeal gut, but remains connected to tongue by thyrooglossal duct, which is obliterated later in development.  Thyroid gland descends to a point just caudal to laryngeal cartilages. 

Facial structures (general)

a) medial nasal prominence forms midline of nose, philtrum and primary palate
b) lateral nasal prominence forms alae of nose
c) maxillary prominence forms cheek region and lateral lip
d) clefts can form at inter-prominence fusion lines

Nose

At the time of anterior neural tube closure, mesenchyme around forebrain, frontonasal prominence (FNP), has smooth rounded extended contour.  Nasal placodes (thickening of surface ectoderm to become peripheral neural tissue) develop on frontolateral aspects of FNP.  Mesenchyme swells around nasal placode producing a medial and lateral nasal prominence (nasomedial and nasolateral processes).  These nasal prominences form the nose.

Mouth 

Stomadeum (primitive oral cavity) forms between frontonasal prominence and first pharyngeal arch.  The first pharyngeal arch forms the dorsal maxillary prominence and ventral mandibular prominence.  The maxillary prominence will merge with medial nasal prominences, pushing them closer to cause fusion.  Fused medial nasal prominences will form midline of nose and midline of upper lip (philtrum) and primary palate (first 4 teeth).

Nasolacrimal structures

Maxillary and lateral nasal prominences are separated by deep furrow, the nasolacrimal groove.  Ectoderm in floor of groove forms epithelial cord, which detaches from overlying ectoderm.  The epithelial cord canalizes to form the nasolacrimal duct.  The upper end of the duct widens to form the lacrimal sac.  After detachment of the cord, the maxillary and lateral nasal prominences merge with each other, resulting in the formation of a nasolacrimal duct that runs from the medial corner of the eye to the inferior meatus of the nasal cavity.  
The maxillary prominences enlarge to form the cheeks and maxillae.
The lateral nasal prominences form the alae of the nose.

Secondary (hard) palate

Main part of definitive palate formed by two palatine shelves derived from intraoral bilateral extensions of the maxillary prominences.  These appear at the 6th week.  They are directed obliquely downward on each side of the tongue; they move down when mandible gets bigger.  
At the seventh week, they ascend to attain a horizontal position, then fuse to form the secondary palate.  At the time the palatine shelves fuse, the nasal septum (an outgrowth of median tissue of the frontonasal prominence) grows down and joins the cephalic aspect of the newly formed palate
Anteriorly, shelves fuse with triangular primary palate.  The incisive foramen marks the midline between the primary and secondary palate.

External Ear

The auricle is derived from 6 auricular hillocks (mesenchymal proliferations) along the dorsal aspect of arches 1 (top of ear) and 2 (bottom of ear).  These fuse to form the definitive auricle.  At the mandible grows, the ear is pushed upward and backward from its initial horizontal position on the neck.
The EAM is derived from the 1st pharyngeal arch.  
The eardrum (tympanic membrane) is composed of 3 layers of cells: 1) ectodermal epithelial lining of bottom of EAM; 2) endodermal epithelium lining of tympanic cavity; 3) intermediate layer of connective tissue.
The eardrum is composed of multiple cell layers because it represents the first pharyngeal membrane, and thus lies at the junction of the first pharyngeal pouch and cleft.

Middle Ear

The middle ear consists of an auditory tube (from the 1st pharyngeal pouch, along with tympanic cavity) and the ossicles (from pharyngeal arches 1 and 2 cartilage).  
The first arch cartilage forms the malleus and incus.  The tensor tympani (muscle of the malleus) is derived from the fourth somitomere (associated with the first arch) and is therefore innervated by CN V.
The second arch cartilage forms the stapes.  The stapedius (muscles of the stapes) is derived from the sixth somitomere (associated with the second arch) and is therefore innervated by CN VII.
The ossicles are initially embedded in mesenchyme, but in the 8th month, the mesenchyme degenerates and an endodermal epithelial lining of the tympanic cavity envelops the ossicles and connects them to the wall of the cavity in a mesentery-like fashion.


Inner Ear

The inner ear is derived thickening of surface ectoderm on both sides of the hindbrain (otic placodes).  The placodes invaginate to form otic vesicles (otocytes).  The vesicles then divide into ventral and dorsal components.
The ventral component forms the saccule and cochlear duct.
The dorsal component forms the utricle and semicircular canals and endolymphatic duct.


Cochlear Duct

Derived from an outgrowth of the saccule during the 6th week.  The outgrowth penetrates the surrounding mesenchyme in a spiral fashion.  The surrounding mesenchyme forms the cartilage and undergoes vacuolization.
The scala vestibule and scale tympani form and surround the cochlear duct.  They are filled with periplymp to receive mechanical vibrations of ossicles. The mechanical stimuli activates sensory (ciliary) cells in the cochlear duct.  

Semicircular canals

The utricle is initially three flattened outpocketings, which lose the central core.  From this three semicircular canals are forms, each at 90 degree angles from one another.  Sensory cells arise in the ampulla at one end of each canal, in the utricle and saccule. 

Blood Supply to the Head and Neck

  • Most arteries in the anterior cervical triangle arise from the common carotid artery or one of the branches of the external carotid artery.
  • Most veins in the anterior cervical triangle are tributaries of the large internal jugular vein.

 

The Common Carotid Arteries

  • The right common carotid artery begins at the bifurcation of the brachiocephalic trunk, posterior to the right sternoclavicular joint.
  • The left common carotid artery begins arises from the arch of the aorta and ascends into the neck, posterior to the left sternoclavicular joint.
  • Each common carotid artery ascends into the neck within the carotid sheath to the level of the superior border of the thyroid cartilage.
  • Here it terminates by dividing into the internal and external carotid arteries. 

The Internal Carotid Artery

  • This is the direct continuation of the common carotid artery and it has no branches in the neck.
  • It supplies structures inside the skull.
  • The internal carotid arteries are two of the four main arteries that supply blood to the brain.
  • Each artery arises from the common carotid at the level of the superior border of the thyroid cartilage.
  • It then passes superiorly, almost in a vertical plane, to enter the carotid canal in the petrous part of the temporal bone.
  • A plexus of sympathetic fibres accompany it.
  • During its course through the neck, the internal carotid artery lies on the longus capitis muscle and the sympathetic trunk.
  • The vagus nerve (CN X) lies posterolateral to it.
  • The internal carotid artery enters the middle cranial fossa beside the dorsum sellae of the sphenoid bone.
  • Within the cranial cavity, the internal carotid artery and its branches supply the hypophysis cerebri (pituitary gland), the orbit, and most of the supratentorial part of the brain. 

The External Carotid Arteries 

  • This vessel begins at the bifurcation of the common carotid, at the level of the superior border of the thyroid cartilage.
  • It supplies structures external to the skull.
  • The external carotid artery runs posterosuperiorly to the region between the neck of the mandible and the lobule of the auricle.
  • It terminates by dividing into two branches, the maxillary and superficial temporal arteries.
  • The stems of most of the six branches of the external carotid artery are in the carotid triangle. 

The Superior Thyroid Artery

  • This is the most inferior of the 3 anterior branches of the external carotid.
  • It arises close to the origin of the vessel, just inferior to the greater horn of the hyoid.
  • The superior thyroid artery runs anteroinferiorly, deep to the infrahyoid muscles and gives off the superior laryngeal artery. This artery pierces the thyrohyoid membrane in company with the internal laryngeal nerve and supplies the larynx.

 

The Lingual Artery

  • This arises from the external carotid artery as it lies on the middle constrictor muscle of the pharynx.
  • It arches superoanteriorly, about 5 mm superior to the tip of the greater horn of the hyoid bone, and then passes deep to the hypoglossal nerve, the stylohyoid muscle, and the posterior belly of digastric muscle.
  • It disappears deep to the hyoglossus muscle.
  • At the anterior border of this muscle, it turns superiorly and ends by becoming the deep lingual artery.

 

The Facial Artery

  • This arises from the carotid artery either, in common with the lingual artery, or immediately superior to it.
  • In the neck the facial artery gives off its important tonsillar branch and branches to the palate and submandibular gland.
  • The facial artery then passes superiorly under the cover of the digastric and stylohyoid muscles and the angle of the mandible.
  • It loops anteriorly and enters a deep groove in the submandibular gland.
  • The facial artery hooks around the inferior border of the mandible and enters the face. Here the pulsation of this artery can be felt (anterior to the masseter muscle).

 

The Ascending Pharyngeal Artery

  • This is the 1st or 2nd branch of the external carotid artery.
  • This small vessel ascends on the pharynx, deep to the internal carotid artery.
  • It sends branches to the pharynx, prevertebral muscles, middle ear and meninges.

 

The Occipital Artery

  • This arises from the posterior surface of the external carotid near the level of the facial artery.
  • It passes posteriorly along the inferior border of the posterior belly of digastric.
  • It ends in the posterior part of the scalp.
  • During its course, it is superficial to the internal carotid artery and three cranial nerves (CN IX, CN X and CN XI).

 

The Posterior Auricular Artery

  • This is a small posterior branch of the external carotid artery.
  • It arises from it at the superior border of the posterior belly of the digastric muscle.
  • It ascends posteriorly to the external acoustic meatus and supplies adjacent muscles, the parotid gland, the facial nerve, structures in the temporal bone, the auricle, and the scalp

The Internal Jugular Vein

 

  • This is usually the largest vein in the neck.
  • The internal jugular vein drains blood from the brain and superficial parts of the face and neck.
  • Its course corresponds to a line drawn from a point immediately inferior to the external acoustic meatus to the medial end of the clavicle.
  • This large vein commences at the jugular foramen in the posterior cranial fossa, as the direct continuation of the sigmoid sinus.
  • The dilation at its origin is called the superior bulb of the internal jugular vein.
  • From here it runs inferiorly through the neck in the carotid sheath.
  • The internal jugular vein leaves the anterior triangle of the neck by passing deep to the SCM muscle.
  • Posterior to the sternal end of the clavicle, it unites with the subclavian vein to form the brachiocephalic vein.
  • Near its termination is the inferior bulb of the jugular vein contains a bicuspid valve similar to that of the subclavian vein.
  • The deep cervical lymph nodes lie along the course of the internal jugular vein, mostly lateral and posterior.

 

Tributaries of the Internal Jugular Vein

  • This large vein is joined at its origin by the: inferior petrosal sinus, the facial, lingual, pharyngeal, superior and middle thyroid veins, and often the occipital vein.

NEUROHISTOLOGY

The nervous system develops embryologically from ectoderm, which forms the neural plate

Successive growth and folding of the plate results in the formation of the primitive neural tube.

The neuroblasts in the wall of the tube differentiates into 3 cell types:

Neurons:  conduction of impulses

Neuroglial cells: connective tissue and support of CNS

Ependymal cells:  Lines the lumen of the tube.

   - Specialized neuro-ectodermal cells which lines the ventricles of the adult brain

                - Essentially also a neuroglial cell

Basic Unit = neuron

Exhibits irritability (excitability) and conductivity

A typical neurons consists of:

Cell body : Has nucleus (karyon) and surrounding cytoplasm (perikaryon) which contains organelles cell's vitality

Dendrites:  Several short processes

Axon:One large process

Terminates in twig like branches (telodendrons)

May also have collateral branches projecting along its course. These exit at nodes of Ranvier

Axon enveloped in a sheath, and together forms the nerve fiber

Classification:

May be done in different ways, i.e.

Functional = afferent, efferent, preganglionic, postganglionic, etc.

Morphological = shape, processes, etc

A typical morphological classification is as follows

a. Unipolar: Has one process only Not found in man

b. Bipolar (so-called ganglion cell):Has two processes Found in sensory systems, e.g. retina olfactory system

c. Multipolar: Has several process Most common in CNS

Cell bodies vary in shape, e.g.  stellate (star) , pyramidal

d. Pseudo-unipolar: Essentially bipolar neurons, but processes have swung around cb and fused with each other. They therefore enter and leave at one pole of the cell.

Typical neuron:

- Has 2 or more dendrites

Close to the cb the cytoplasm of dendrites has Nissl granules as well as mitochondria

Only one axon Arises from axon hillock, Devoid of Nissl granules, Encased in myelin sheath

No additional covering except for occasional foot processes of neuroglial cells

May branch at right angles

Branches at a node of Ranvier is known as a collateral

Ends of axons break up into tree-like branches, known as telodendria

Axons may be short (Golgi Type II) e.g. internuncial long (Golgi Type I) e.g. pyramidal neuron

Nucleus Central position Large and spherical

Chromatin is extended and thus not seen in LM. This allows the nucleolus to be prominent

Cytoplasm (perikaryon)

Surrounds nucleus  May be large or small, shape may be round, oval, flattened, pyramidal, etc

Contains aggregates Nissl granules(Bodies) which is also sometimes referred to as rhomboid flakes

aggregation of membranes and cisternae of rough endoplasmic reticulum (RER)

numerous ribosomes and polyribosomes scattered between cisternae

(Polyribosome = aggregate of free ribosomes clumped together)

responsible for ongoing synthesis of new cytoplasm and cytoplasmic substances

needed for conduction of impulses

highly active in cell protein synthesis

resultant loss of power to divide which is characteristic of neurons

- Golgi network surrounding nucleus (seen in EM only)

- Fibrils made up of:

- neurofilaments

- microtubules

Tubules involved in:

1. plasmic transport

2. maintenance of cell shape

3. essential for growth and elongation of axons and dendrites

Neurofilament:

1. provide skeletal framework

2. maintenance of cell shape

3. possible role in axonal transport

 

(Axonal [axoplasmic; plasmic] transport may be antero- or retrograde. Anterograde transport via neurotubules is fast and moves neurotransmitters. Retrograde transport is slow and is the reason why viruses and bacteria can attack and destroy cell bodies. E.g. polio in the ventral columns and syphilis in the dorsal columns).

- Numerous mitochondria

- Neurons lack ability to store glycogen and are dependent for energy on circulating glucose

Impulses are conducted in one direction only

Dendrites conduct towards the cb

Axons conduct away from cb

Synapses:

- Neurons interconnect by way of synapses

- Normally the telodendria of an axon synapse with the dendrites of a succeeding axon

axo-dendritic synapse

This is usually excitatory

- Other types of synapses are:

 axo-axonic

May be excitatory and/or inhibitory

axo-somatic

May be excitatory and/or inhibitory

 dendrodendritic

Usually inhibitory

- Synapses are not tight junctions but maintain a narrow space the so-called synaptic cleft

- The end of an telodendron is usually enlarged (bouton) and contains many synaptic vesicles,

mitochondrion, etc. Its edge that takes part in the synapse is known as the postsynaptic membrane and no

vesicles are seen in this area

- Synapses may be chemical (as above) or electrical as in the ANS supplying smooth muscle cells subjacent to adjacent fibres

Gray and White Matter of Spinal Cord:

- Gray matter contains:

- cb's (somas) of neurons

- neuroglial cells

- White matter contains:

- vast number of axons

- no cb's

- colour of white matter due to myelin that ensheathes axons

Myelin:

- Non-viable fatty material contains phospholipids, cholesterol and some proteins

- Soluble and not seen in H&E-sections because it has become dissolved in the process, thus leaving empty spaces around the axons

- Osmium tetroxide (OsO4) fixes myelin and makes it visible by staining it black. Seen as concentric rings in cross section

- Myelin sheath (neurolemma) is formed by two types of cells

- Within the CNS by Oligodendrocytes

- On the peripheral neurons system by Schwann cells

- Sheath is formed by being wrapped around the axon in a circular fashion by both types of cells

Neuroglial Cells:

- Forms roughly 40% of CNS volume

- May function as: 1. support

2. nurture ("feeding")

3. maintain

Types of glial cells:

Oligodendrocytes:

- Small dark stained dense nucleus

- Analogue of Schwann cell in peripheral nervous system

- Has several processes which forms internodal segments of several fibres (one cell ensheathes more than one axon)

- Provides myelin sheaths in CNS

- Role in nurturing (feeding) of cells

Astrocytes:

Protoplasmic astrocytes:

- found in gray matter

- round cell body

- large oval nucleus with prominent nucleolus

- large thick processes

- processes are short but profusely branched

- perivascular and perineurial foot processes

- sometimes referred to as mossy fibres

Fibrous Astrocytes:

- found in white matter

- polymorphic cells body

- large oval nucleus

- long thin processes

Microglia:

- Neural macrophages

- smallest of the glial cells

- intense dark stained nucleus

- conspicuously fine processes which has numerous short branches

Cerebral Cortex:

Consists of six layers which are best observed in the cortex of the hippocampus

From superficial to deep:

- Molecular layer:

- Has few cells and many fibres of underlying cells

- Outer granular layer:

- Many small nerve cells

- Pyramidal layer:

- Pyramidally-shaped cells bodies

- Inner granular layer:

- Smaller cells and nerve fibres

- Internal (inner) pyramidal layer:

- Pyramidal cells bodies

- Very large in the motor cortex and known as Betz-cells

- Polymorphic layer:

- Cells with many shapes

Cerebellar Cortex:

Consists of three layers

Connections are mainly inhibitory

From superficial to deep

- Outer molecular layer:

- Few cells and many fibres

- Purkinje layer:

- Huge flask-shaped cells that are arranged next to one another

- Inner granular layer:

- Many small nerve cells

Motor endplate:

Seen in periphery on striated muscle fibres

- known as boutons

- has no continuous myelin covering from the Schwann cells

- passes through perimysium of muscle fiber to "synapse"

- multiple synaptic gutter (fold) in sarcoplasma of muscle fiber beneath bouton

- contains numerous synaptic vesicles and mitochondria

Ganglia:

- Sensory Ganglia:

(e.g. trigeminal nerve, ganglia and dorsal root ganglia)

- No synapse (trophic unit)

- pseudo-unipolar neurons

- centrally located nucleus

- spherical smooth border

- conspicuous axon hillock

- Surrounded by cuboidal satellite cells (Schwann cells)

- Covered by spindle shaped capsular cells of delicate collagen which forms the endoneurium

- Visceral and Motor Ganglia (Sympathetic and Parasympathetic):

- Synapse present

- Ratio of preganglionic: postganglionic fibres

1. Sympathetic 1:30

Therefore excitatory and catabolic

2. Parasympathetic 1:2

Therefore anabolic

Except in Meissner and Auerbach's plexuses where ratio is 1:1000 '2 because of parasympathetic component's involvement in digestion

- Preganglionic axons are myelinated (e.g. white communicating rami)

- Postganglionic axon are non-myelinated (e.g. gray communicating rami)

- small multipolar cell body

- excentrally located nucleus

- Inconspicuous axon hillock

- satellite cells few or absent

- few capsular cells

Muscles of the Pharynx

  • This consists of three constrictor muscles and three muscles that descend from the styloid process, the cartilaginous part of the auditory tube and the soft palate.

External Muscles of the Pharynx 

  • The paired superior, middle, and inferior constrictor muscles form the external circular part of the muscular layer of the wall.
  • These muscles overlap each other and are arranged so that the superior one is innermost and the inferior one is outermost.
  • These muscles contract involuntarily in a way that results in contraction taking place sequentially from the superior to inferior end of the pharynx.
  • This action propels food into the oesophagus.
  • All three constrictors of the pharynx are supplied by the pharyngeal plexus of nerves, which lies on the lateral wall of the pharynx, mainly on the middle constrictor of the pharynx.
  • This plexus is formed by pharyngeal branches of the glossopharyngeal (CN IX) and vagus (CN X) nerves.

The Superior Constrictor Muscle

  • Origin: pterygoid hamulus, pterygomandibular raphe, posterior end of the mylohyoid line of the mandible, and side of tongue.
  • Insertion: median raphe of pharynx and pharyngeal tubercle.
  • Innervation: though the pharyngeal plexus of nerves.
  • The pterygomandibular raphe is the fibrous line of junction between the buccinator and superior constrictor muscles.

The Middle Constrictor Muscle

  • Origin: stylohyoid ligament and greater and lesser horns of hyoid bone.
  • Insertion: median raphe of pharynx.
  • Innervation: through the pharyngeal plexus of nerves.

The Inferior Constrictor Muscle

  • Origin: oblique line of thyroid cartilage and side of cricoid cartilage.
  • Insertion: median raphe of pharynx.
  • Innervation: through the pharyngeal plexus of nerves.
  • The fibres arising from the cricoid cartilage are believed to act as a sphincter, preventing air from entering the oesophagus. 

Gaps in the Pharyngeal Musculature

  • The overlapping arrangement of the three constrictor muscles leaves 4 deficiencies or gaps in the pharyngeal musculature.
  • Various structures enter and leave the pharynx through these gaps.
  • Superior to the superior constrictor muscle, the levator veli palatini muscle, the auditory tube, and the ascending palatine artery pass through a gap between the superior constrictor muscle and the skull.
  • Superior to the superior border of the superior constrictor, the pharyngobasilar fascia blends with the buccopharyngeal fascia to form, with the mucous membrane, the thin wall of the pharyngeal recess.
  • Between the superior and middle constrictor muscles, the gateway to the mouth, though which pass the stylopharyngeus muscle, the glossopharyngeal nerve (CN IX), and the stylohyoid ligament.
  • Between the middle and inferior constrictor muscles, the internal laryngeal nerve and the superior laryngeal artery and vein pass to the larynx.
  • Inferior to the inferior constrictor muscles, the recurrent laryngeal nerve and inferior laryngeal artery pass superiorly into the larynx.

LYMPHOID SYSTEM

Consists of cells, tissues and organs

Protects the body against damage by foreign substances

Immuno competent cells in the lymphoid system distinguish between the bodies own molecules and foreign molecules.

The response is immunity.

lymphoid tissues have a: - reticular framework (collagen III) consisting of:  reticular cells , (indistinguishable from fibroblasts) , lymphocytes, macrophages,  antigen presenting cells, plasma cells

Each organ has special features:

Capsulated – spleen, lymph nodes, thymus

Unencapsulated – tonsils,  Peyers patches. lymphoid nodules in: - alimentary canal

- Nodules in: respiratory tract,  urinary tract, reproductive tracts

2 Types of immunity:

- Cellular: Macrophages - destroy foreign cells

- Humeral – immunoglobulins and antibodies (glycoproteins) interact with foreign substances

- cellular and humeral immune system require accessory cells like: macrophages, antigen presenting cells

 

Thymus

Lymphocytes develop from mesenchym. The lymphocytes then invade an epithelial premordium .The epithelial cells are pushed apart by lymphocytes. Epithelial cells remain connected through desmosomes to form the epithelial reticular cells.  Septae from the capsule divide the thymus up into incomplete lobules (0,5-2 mm ). Each lobule has a cortex which is packed with lymphocytes. In the middle of the lobule is the lighter staining medulla. The cortex and medulla are continuous. Hassall's corpuscles, consisting of flat epithelial cells, lie in the medulla .The corpuscles increase in size and number through life

Thymus cells:

- Cortex and medulla have the same cells – only their proportions differ

- The predominant cell is the T lymphocytes and precursors

- There are also epithelial reticular cells with large oval nuclei. The cells are joined by desmosomes.

- A few mesenchymal reticular cells are also present.

- There are many macrophages.

Cortex:

- Only capillaries (no other vessels)

- small lymphocytes predominate

- here they do not form nodules

- epithelial cells surround groups of lymphocytes and blood vessels

- around the capillary is a space

- forms blood thymus barrier

- Layers of the blood thymus barrier:

- capillary wall endothelium

basal lamina

little CT with macrophages

- epithelial reticular cells - basal lamina

- cytoplasm of epithelial reticular cells

Medulla:

- Stains light because of many epithelial reticular cells

- 5% of thymic lymphocytes found in medulla

- mature lymphocytes - smaller than that of cortex

- leave through venules to populate organs such as the spleen and lymph nodes

- In the medulla the covering of capillaries by epithelial reticular cells is incomplete - no barrier

- Hassall's corpuscles

- 30 - 150µm .

- consists of layers of epithelial reticular cells

- the central part of the corpuscle may only be cell remnants

- unknown function

 

Lymph nodes

- Encapsulated

- found throughout the body

- form filters in the lymph tracts

- lymph penetrate through afferent lymph vessels on the convex surface

- exit through efferent lymph vessels of the hilum

- capsule send trabeculae into the node to divide it up into incomplete compartments

- reticular tissue provide the super structure

- under the capsule is a cortex – the cortex is absent at the hilum

- At the centre of the node and at the hilum is a medulla

- The cortex has a subcapsular sinus and peritrabecular sinuses

The sinuses:-

- Incompletely lined by reticular cells

- Have numerous macrophages

- fibres cross the sinuses

- they slow the flow of lymph down -

- so that the macrophages can get a chance to perform their function.

Primary and secondary lymphoid nodules

- Some lymphocytes in the cortex form spherical aggregations 0,2-1 mm Ø called primary nodules (or follicles)

- They contain mainly B lymphocytes but some T- lymphocytes are also present

- A germinal centre may develop in the middle of the nodule when an antigen is present. The nodule then becomes a secondary nodule, which is:

- light staining in the centre because:

- many B lymphocytes increase in size to become plasmablasts

- plasmablasts undergo mitosis to become plasmacytes

- plasmacytes migrate to the follicular periphery and then to the medullary cords where they mature

into plasma cells that secrete antibodies into the efferent lymph.

- lymphocytes that don’t differentiate into plasma cells remain small lymphocytes and are called memory

cells – which migrate to different parts of the body

- memory cells are capable of mounting a rapid humoral response on subsequent contact with the same antigen.

- In the nodules there are also follicular dendritic cells which are:

- non phagocytic

- with cytoplasmic extensions

- trap antigens on their surface

- present it to B and T lymphocytes which then respond

Paracortical Zone

- Between adjacent nodules and between the nodules and the medulla are loosely arranged lymphocytes which form the paracortical area or deep cortical area.

- The main cell type in this area is the T lymphocyte.

- They enter the lymph node with the blood and migrate into the paracortical zone.

- T lymphocytes are stimulated when presented with an antigen by the follicular dendritic cells.

- They transform into large lymphobasts which undergo mitosis to produce activated T lymphocytes.

- These activated T lymphocytes must go to the area of antigen stimulation to perform its function.

- When this happens the paracortex expand greatly.

- Later they join the efferent lymph to leave the lymph node.

- These lymphocytes disappear when the thymus is removed - especially if done at birth

 

The medulla

- Consists of medulla with branching cords separated by medullary sinusses.

- Througout the medulla are trabeculae.

- The cords contain numerous B lymphocytes and plasma cells.

- A few macrophages and T lymphocytes may also be present.

- Receive and circulate lymph from the cortical sinuses.

- Medullary sinuses communicate with efferent lymph vessels.

 

Spleen

- Largest lymphatic organ

- Many phagocytic cells

- Filters blood

- Form activated lymphocytes which go into the blood

- Form antibodies

General structures:

- Dense CT capsule with a few smooth muscle fibres encapsulate the spleen

- The capsule is thickened at the hilum.

- Trabeculae from the hilum carry blood vessels and nerves in and out of the spleen.

- The capsule divide the spleen into incomplete compartments.

- The spleen has no lymph vessels because it is a blood filter and not a lymph filter like the lymph nodes.

Splenic pulp

- The lymph nodules are called the white pulp

- The white pulp lies in dark red tissue called red pulp

- Red pulp is composed of splenic cords (Billroth cords) which lie between sinusoids

- Reticular tissue forms the superstructure for the spleen and contains:

- reticular cells

- macrophages

Blood circulation

- The splenic artery divide as it enters the hilum

- The arteries in the trabeculae are called trabecular arteries

- The trabecular arteries give of braches into the white pulp (central arteries).

- The artery may not lie in center but is still called a central artery.

- The central arteries give off branches to the white pulp which go through the white pulp to end in the marginal sinuses on the perimeter of the white pulp.

- The central artery continues into the red pulp (called the pulp artery) where it branches into straight arteries called penicilli.

- The penicilli continue as arterial capillaries some of which are sheated by macrophages.

- The blood from the arterial capillaries flow into the red pulp sinuses that lie between the red pulp cords.

- The way the blood gets from the capillaries into the sinuses is uncertain. It can either:

- Flow directly into the sinuses - closed theory

- Or flow through the spaces between the red pulp cord cells and then enter the sinusoid - open theory.

- Presently the open theory is popular.

- From the sinusoids the blood flow into the: - Red pulp veins

- which join the trabecular veins

- to form form the splenic vein

(Trabecular veins form channels without a wall lined by endothelium in the trabeculae.)

White pulp:

- Forms a lymph tissue sheath around the central artery

- The lymphocytes around the central artery is called the periarterial lymphatic sheath (PALS).

- Which contains mainly T lymphocytes

- So the PALS is chracterized by a central artery.

- True nodules may also be present as an extension of the PALS.

- They displace the central artery so that it lies eccentric.

- Nodules normally have a germinal center and consists mainly of B lymphocytes

- Between the red and white pulp there is a marginal zone consisting of:

- Many sinuses and of  loose lymphoid tissue.

- There are few lymphocytes

- many macrophages

- lots of blood antigens which

- play a major role in immunologic activity.

Red Pulp:

- In the fresh state this tissue has a red colour because of the many erythrocytes.

- Red pulp consists of splenic sinusses separated by splenic cords (cords of Billroth).

- Between reticular cells are macrophages, lymphocytes, granulocytes and plasma cells.

- Many of the macrophages are in the process of phagocytosing damaged erythrocytes.

- The splenic sinusoids are special sinusoidal vessels in the following ways:

- It has a dilated large irregular lumen

- Spaces between unusually shaped endothelial cells permit exchange between sinusoids and adjacent tissues. (The endothelial cells are very long arranged parallel to the direction of the vessel)

- The basal lamina of the sinusoid is not continuous but form rings.

 

Tonsils

- Tonsils are incompletely encapsulated lymphoid tissues

- There are - Palatine tonsils

- pharyngeal tonsils

- lingual tonsils

 

Palatine Tonsil

- Contains dense lymphoid tissue.

- Covered by stratified squamous non-keratinized epithelium

- with an underlying CT capsule

- Crypts that enter the tissue end blind.

 

Lingual Tonsil

- Lie on the posterior 1/3 of the tongue.

- Crypts link up with underlying glands that flush them.

- Epithelial covering is the same as that of the palatine tonsil.

 

ENDOCRINE

Endocrine glands have no ducts

They secrete into the blood from where the secretion (hormone) reaches a target cell

The following is a list of endocrine glands:

  • Hypophysis
  • Thyroid
  • Parathyroid
  • Adrenals
  • Islets of Langerhans
  • Pineal
  • Gonads

Hypophysis: Develops from oral ectoderm and nerve tissue,  The oral part forms an upgrowth with an invagination (Rathke's pouch) The nervous part grows from the floor of the diencephalon - staying intact .The oral part separates from the mouth

Ectoderm – adenohypophysis - pars tuberalis

- pars distalis

- pars intermedia .

 

Diencephalon – neurohypophysis   - pars nervosa .

- infundibulum

- median eminence

Rathke's pouch remains as Rathke's cysts

Pars Distalis: Forms 75% of the gland, The cells form cords,  with fenestrated capillaries in-between

2 Cell types:

Chromophobes :  50% of the cells, do not stain  lie in groups, they are resting chromophils

granules have been used

Chromophils: Stain

They can be subdivided according to their reaction with different stains

Acidophils (40%) :Cells have acidophilic granules in their cytoplasm. The cells are secretory.

They have a well developed EPR and Golgi apparatus.They have secretory granules.

subdivided into:

- Somatotropin cells: secrete somatotropin (growth hormone)

- Mammotropic cells:  secrete prolactin

Basophils (10%) :  These cells have basophilic granules in their cytoplasm and can be subdivided into:

Thyrotropin cells:  secrete thyroid - stimulating hormone (TSH)

Corticotrophin cells:  secrete adrenocorticotropic (ACTH)

Gonadotropic cells:  secrete two hormones:  Follicle stimulating hormone (FSH):

Stimulate follicle development and spermatogenesis

Luteinizing hormone (LH): Stimulate the formation of the corpus luteum and Leydig cells

Pars Tuberalis:  Cells lie around the infundibulum . It is continuous with the pars distalis

Cells are cuboidal with no granules. Their function is unknown

Pars Intermedia:  Poorly developed in the human. Follicles lined by cuboidal cells and filled with colloid are found Known as Rathke's cysts .There are also a few big basophilic cells

Their function is unknown

Pars Nervosa: Contains: - myelinated axons  pituicytes,  blood vessels

Axons:

The cell bodies of the axons lie in the supra-optic and paraventricular nuclei of the hypothalamus .From the cell bodies the axons go through the infundibulum forming the  hypothalamohypophyseal tract to end in the pars nervosa

 The axons have dilated blind endings filled with hormones (Herring bodies) coming from the cell bodies.

Two hormones are secreted:

Oxytoxin: - Cause contraction of the uterus

    - Cause contraction of the myoepithelial cells of the milkgland

    - The hormone is secreted by the paraventricular nuclei

Vasopressin :- Cause reabsorption of H2O in the kidney (also known as antidiuretic hormone ADH)  The hormone is secreted by the supraoptic nuclei.  A hypophyseal portal system exists

A primary capillary plexus of fenestrated capillaries form around the median eminence. Inhibitory hormones are secreted into these capillaries

The capillaries rejoin to form the portal veins that traverse the pituitary stalk

The portal veins break up into a secondary capillary plexus which lies close to the cells of the adenohypophysis

This portal system regulates the functions of the anterior pituitary function.

 

Pineal

Surrounded by pia which sends septae into the gland Cells are mainly pinealocytes and astroglial cells

Pinealocytes:Irregular shaped cells. with processes ending in flattened dilatations

Have a well developed smooth surfaced endoplasmic reticulum, Also a rough EPR not well developed, Lots of microtubules

 

Astroglial Cells: Elongated nucleus, Cells have long processes, They perform a supporting function

Hormones:

Melatonin - secreted during the night .suppress the onset of puberty

Serotonin - secreted during the day

In humans the pineal form concretions of calcified material called brain sand

Brain sand vary in size and number with age and is visible on X-rays

Mast cells are also found in the pineal and cause the high histamine contend of the gland

THYROID

Has a CT capsule that sends septae into the gland to divide it up into incomplete lobes and lobules. In the lobules are follicles, Follicles vary in size,  They are surrounded by surrounded by reticular CT and capillaries

Cells of the Follicle:

Follicular Cells :  Single layer of cuboidal cells,  lie around the colloid, Follicular cells can become columnar when very active, Nucleus  central, EPR has wide cisternae ,Golgi present

  • microvilli on the free surface

 

Parafollicular Cells:  Also known as C-cells, Form part of the epithelium or form clusters between the follicles

- They never come into contact with the colloid

- Larger and stain less intensely than the follicular cells, Form 2% of the cells, Secrete calcitonin

Hormones: Thyroxine and thyriodothyronine - stimulate the metabolic rate, Calcitonin - lower the blood calcium

Parathyroid:

Has a CT capsule which send septae into the gland to divide it up into incomplete lobules, The CT contains fat which increase with age - may eventually be 50% of the gland, Glandular cells are arranged in cords

 

Glandular Cells:

Chief Cells:  Small cells so their nuclei lie close together, Rich in glycogen, Biggest omponent

Secrete parathyroid hormone - essential for life

Oxyphil Cells:Develop at puberty, Bigger than the chief cells, Nuclei are smaller, Acidophilic

Hormones:

Parathyroid hormone - regulate calcium and phosphate ions in the blood

ADRENAL

- Thick CT capsule that do not send septae into the gland

Cortex:

Has 3 layers

Zona glomerulosa: 15% of the cortex, Directly under the capsule, Cells are columnar or pyramidal,  Arranged in small groups or clusters, Wide fenestrated capillaries surround the clusters, Cells have an extensive smooth EPR

Zona Fasciculata: 78% of the cortex, Cells are arranged in cords ,1 to 2 cells wide perpendicular to the surface, Sinusoids lie between the cords, Cells are polyhedral with a central nucleus which is bigger than that of the zona glomerulosa, Lots of lipid in the cytoplasm cause the cells to stain lightly,  Cells have a well developed smooth and rough EPR

The mitochondria in the cells are round with tubular or vesicular cristae

Zona Reticularis:  7% of the cortex, Cells form a network of cords with wide capillaries in-between The mitochondria in the cells are more ofte6n elongated than that in the zona fasciculate  Degenerating cells with pyknotic nuclei are found.  Cells contain numerous large lipofuscin granules. Cells of the cortex do not store their secretions but form and secrete on demand.

Hormones:

3 Groups:

Glucocorticoids (e.g. cortisol) - have an affection on carbohydrate metabolism

Mineralocorticoid (e.g. aldosterone) - control water and electrolyte balans

Androgens (e.g. dehyroepiandrosterone) - not very important

Medulla:

- Cells are big and oval and lie in groups and cords around bloodvessels

- Oxidising agents stain the granules in these cells brown - cells are therefore called chromaffin cells

- Granules contain adrenaline or non-adrernalin

- A few parasympathetic ganglion cells are also present

Hormones:

- Adrenaline - increase oxygen uptake

- increase blood pressure

- Noradrenaline - maintain blood pressure

Blood Supply:

- Blood vessel enter from the capsule to form the wide capillaries

- They flow into venules that form a central vein

- Between the endothelium of the capillaries and the glandular cells there is a subendothelial

- space.

- The glandular cells have microvilli protruding into this space.

ISLES OF LANGERHANS

Endocrine part of pancreas.  The isles are round clusters in the exocrine tissue

- 100 - 200 µm

Islands consists of slightly stained polygonal or rounded cells,  The cells are separated by fenestrated capillaries

- Autonomic nerve fibres innervate the blood vessels and the island cells

- 4 different cell types have been described

A cells : 20% of the cells,  Bigger than B cells, Lie at the periphery, Have secretory granules ,Contain glucagon

B cells :  80%,  Lie in the centre of the island,  The cells are small with granules which are crystals,  Granules are formed by insulin

D cells :  Not numerous, Membrane bound granules, Store somatostatin (inhibit somatotropin)

F cells :  Have membrane bound granules,  Store pancreatic polypeptide, The hormone inhibits pancreatic exocrine secretion

Explore by Exams