Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Anatomy

The Superior Roof of the Orbit

  • The superior wall or roof of the orbit is formed almost completely by the orbital plate of the frontal bone.
  • Posteriorly, the superior wall is formed by the lesser wing of the sphenoid bone.
  • The roof of the orbit is thin, translucent, and gently arched. This plate of bone separates the orbital cavity and the anterior cranial fossa.
  • The optic canal is located in the posterior part of the roof.

The Lateral Wall of the Orbit

  • This wall is thick, particularly its posterior part, which separates the orbit from the middle cranial fossa.
  • The lateral wall is formed by the frontal process of the zygomatic bone and the greater wing of the sphenoid bone.
  • Anteriorly, the lateral wall lies between the orbit and the temporal fossa.
  • The lateral wall is partially separated from the roof by the superior orbital fissure.

Muscles Around the Eyelids

  • The function of the eyelid (L. palpebrae) is to protect the eye from injury and excessive light. It also keeps the cornea moist.

The Orbicularis Oculi Muscle

  • This is the sphincter muscle of the eye.
  • Its fibres sweep in concentric circles around the orbital margin and eyelids.
  • It narrows the eye and helps the flow of tears from the lacrimal sac.
  • This muscle has 3 parts: (1) a thick orbital part for closing the eyes to protect then from light and dust; (2) a thin palpebral part for closing the eyelids lightly to keep the cornea from drying; and (3) a lacrimal part for drawing the eyelids and lacrimal punta medially.
  • When all three parts of the orbicularis oculi contract, the eyes are firmly closed and the adjacent skin becomes wrinkled.
  • The zygomatic branch of the facial nerve (CN VII) supplies it.

The Levator Palpebrae Superioris Muscle

  • This muscle raises the upper eyelid to open the palpebral fissure.
  • It is supplied by the oculomotor nerve (CN III).

The Lateral Pterygoid Muscle

  • This is a short, thick muscle that has two heads or origin.
  • It is a conical muscle with its apex pointing posteriorly.
  • Origin: superior head—infratemporal surface and infratemporal crest of the greater wing of the sphenoid bone, inferior head—lateral surface of lateral pterygoid plate.
  • Insertion: neck of mandible, articular disc, and capsule of temporomandibular joint.
  • Innervation: mandibular nerve via lateral pterygoid nerve from anterior trunk, which enters it deep surface.
  • Acting together, these muscles protrude the mandible and depress the chin.
  • Acting alone and alternately, they produce side-to-side movements of the mandible.

Stylohyoid Muscle

  • Origin: Posterior border of the styloid process of the temporal bone.
  • Insertion: Body of the hyoid bone at the junction with the greater horn.
  • Nerve Supply: Facial nerve (CN VII).
  • Arterial Supply: Muscular branches of the facial artery and muscular branches of the occipital artery.
  • Action: Elevates the hyoid bone and base of the tongue.

  • Ossification

  • Intramembranous-found in the flat bones of the face
    • Mesenchymal cells cluster and form strands
    • Strands are cemented in a uniform network. Which is known as osteoid
    • Calcium salts are deposited; osteoid is converted to bone
    • Trabeculae are formed and make cancellous bone with open spaces known as marrow cavities
    • Periosteum forms on the inner and outer surfaces of the ossification centers
    • Surface bone becomes compact bone
  • Endochondral-primary type of ossification In the human

Intramembranous ossification

  • Flat bones develop in this way (bones of the skull)
  • This type of bone development takes place in mesenchymal tissue
  • Mesenchymal cells condense to form a primary ossification centre (blastema)
  • Some of the condensed mesenchymal cells change to osteoprogenitor cells
  • Osteoprogenitor cells change into osteoblasts which start to deposit bone
  • As the osteoblasts deposit bone some of them become trapped in lacunae in the bone and then change into osteocytes
  • Osteoblasts lie on the surface of the newly formed bone
  • As more and more bone is deposited more and more osteocytes are formed from mesenchymal cells
  • The bone that is formed is called a spicule
  • This process takes place in many places simultaneously
  • The spicules fuse to form trabeculae
  • Blood vessels grow into the spaces between the trabeculae
  • Mesenchymal cells in the spaces give rise to hemopoetic tissue
  • This type of bone development forms the first phase in endochondral development
  • It is also responsible for the growth of short bones and the thickening of long bones

Explore by Exams