NEET MDS Lessons
Anatomy
3 basic functions
o protection of respiratory tract during swallowing food/air pathways cross.
epiglottis provides protection
o control intra-thoracic pressure (in coughing) - close off airway to build pressure then rapidly open to release stuff
o production of sound (in speaking, singing, laughing)
Important structures
o hyoid bone
o thyroid cartilage
o arytenoids cartilage: vocal and muscle process
sits on slope on posterior side of cricoid - spin and slide
o cricoid cartilage: signet ring
o thyroepiglottic ligament
Membranes and ligaments
o membrane: general; ligament: thickening of membrane
o folds: free edges of membranes or ligaments
o names: tell you where located
Important membranes:
quandrangular/vestibular membrane—from epiglottis to arytenoids
• inferior edge: false vocal fold
thyrohyoid membrane
conus elasticus = cricothyroid = cricovocal
• superior/medial edge = vocal fold
• vocal ligaments: true folds, top of cricothyroid membrane
MUSCLE
Types:
Skeletal (voluntary)
Cardiac (involuntary)
Smooth (involuntary)
The Medial Pterygoid Muscle
- This is a thick, quadrilateral muscle that also has two heads or origin.
- It embraces the inferior head of the lateral pterygoid muscle.
- It is located deep to the ramus of the mandible.
- Origin: deep head—medial surface of lateral pterygoid plate and pyramidal process of palatine bone, superficial head—tuberosity of maxilla.
- Insertion: medial surface of ramus of mandible, inferior to mandibular foramen.
- Innervation: mandibular nerve via medial pterygoid nerve.
- It helps to elevate the mandible and closes the jaws.
- Acting together, they help to protrude the mandible.
- Acting alone, it protrudes the side of the jaw.
- Acting alternately, they produce a grinding motion.
The Palate
- The palate forms the arched roof of the mouth and the floor of the nasal cavities.
- The palate consists of two regions: the anterior 2/3 or bony part, called the hard palate, and the mobile posterior 1/3 or fibromuscular part, known as the soft palate.
Smooth Muscle
Light microscopic Structure:
cells - long - spindle shaped, nucleus lies in the widest widest part of the fiber, when the fiber contract the nucleus become folded, 30 - 200 µm long,between fibres lie endomycium
Electron microscopic structure:
Mitochondria, ribosomes, golgi, rough EPR, myofilaments are present but no sarcomeres and no Z lines,thin filaments - actin and tropomyosin (7nm), thick filaments - myosin (17nmØ)
- intermediate filaments (10 nm)
- actin and myosin overlap more than in skeletal muscle and can therefore contract more
A rudimentary sacroplasmic reticulum is present in the form of invaginations on the surface called caveolae , So there are no T-tubules, Cells communicate through gap junctions.
Dense bodies
Filaments are attached to dense bodies which take the place of the Z line in skeletal muscle
There are two types of dense bodies - cytoplasmic and membrane
contains a percentage actinin (like the Z line)
dense bodies transmit contractile force to adjacent fibres
Arrangement:
Fibres can be single or in groups, normally arranged in sheaths, In the GIT are 2 or 3 layers
Nerve supply:
2 types:
Where it is arranged in layers a few fibres are innervated together
impulse spread through the gap junctions between fibres (slow contraction)
In the iris and the vas deferens each fiber is individually supplied (quick contraction)
Gross anatomy-study of structures that can be identified with the naked eye; usually involves the use of cadavers
- Microscopic anatomy (histology)-study of cells that compose tissues and organs; involves the use of a microscope to study the details of the species
- Developmental anatomy (embryology)-study of an individual from beginning as a single cell to birth
- Comparative anatomy -comparative study of the animal structure in regard to similar organs or regions
-> This is a wedge-shaped bone (G. sphen, wedge) is located anteriorly to the temporal bones.
-> It is a key bone in the cranium because it articulates with eight bones (frontal, parietal, temporal, occipital, vomer, zygomatic, palatine, and ethmoid).
-> It main parts are the body and the greater and lesser wings, which spread laterally from the body.
-> The superior surface of its body is shaped like a Turkish saddle (L. sella, a saddle); hence its name sella turcica.
-> It forms the hypophyseal fossa which contains the hypophysis cerebri or pituitary gland.
-> The sella turcica is bounded posteriorly by the dorsum sellae, a square plate of bone that projects superiorly and has a posterior clinoid process on each side.
-> Inside the body of the sphenoid bone, there are right and left sphenoid sinuses. The floor of the sella turcica forms the roof of these paranasal sinuses.
-> Studies of the sella turcica and hypophyseal fossa in radiographs or by other imaging techniques are important because they may reflect pathological changes such as a pituitary tumour or an aneurysm of the internal carotid artery. Decalcification of the dorsum sellae is one of the signs of a generalised increase in intracranial pressure.