Talk to us?

Anatomy - NEETMDS- courses
NEET MDS Lessons
Anatomy

The Salivary Glands

  • There are three large, paired salivary glands: the parotid, submandibular, and sublingual glands.
  • In addition to the main salivary glands, there are numerous small accessory salivary glands scattered over the palate, lips, cheeks, tonsils, and tongue.

The Inferior Wall of the Orbit

  • The thin inferior wall of the orbit or the floor is formed mainly by the orbital surface of the maxilla and partly by the zygomatic bone, and orbital process of the palatine bone.
  • The floor of the orbit forms the roof of the maxillary sinus.
  • The floor is partly separated from the lateral wall of the orbit by the inferior orbital fissure.

Muscles acting on the Temporomandibular Joint

  • Movements of the temporomandibular joint are chiefly from the action of the muscles of mastication.
  • The temporalis, masseter, and medial pterygoid muscles produce biting movements.
  • The lateral pterygoid muscles protrude the mandible with the help from the medial pterygoid muscles and retruded largely by the posterior fibres of the temporalis muscle.
  • Gravity is sufficient to depress the mandible, but if there is resistance, the lateral pterygoid, suprahyoid and infrahyoid, mylohyoid and anterior digastric muscles are activated.

 

Actions Muscles
Depression (Open mouth)
Lateral pterygoid
Suprahyoid
Infrahyoid
Elevation (Close mouth)
Temporalis
Masseter
Medial pterygoid
Protrusion (Protrude chin)
Masseter (superficial fibres)
Lateral pterygoid
Medial pterygoid
Retrusion (Retrude chin)
Temporalis
Masseter (deep fibres)
Side-to-side movements (grinding and chewing)
Temporalis on same side
Pterygoid muscles of opposite side
Masseter

The Submandibular Glands

  • Each of these U-shaped salivary glands is about the size of a thumb and lies along the body of the mandible.
  • It is partly superior and partly inferior to the posterior 1/2 of the base of the mandible.
  • It is partly superficial and partly deep to the mylohyoid muscle.
  • The submandibular duct arises from the portion of the gland that lies between the mylohyoid and hyoglossus muscle.
  • The duct passes deep and then superficial to the lingual nerve.
  • It opens by one to three orifices on a small sublingual papilla beside the lingual frenulum.
  • The submandibular gland is supplied by parasympathetic, secretomotor fibres from the submandibular ganglion (preganglionic fibres from the chorda tympani via the lingual nerve).

Mesodermal Origin

Muscles

Innervation

Somitomeres 1, 2

Superior, medial and ventral recti

Oculomotor (III)

Somitomere 3

Superior oblique

Trochlear (IV)

Somitomere 4

Jaw-closing muscles

Trigeminal (V)

Somitomere 5

Lateral rectus

Abducens (VI)

Somitomere 6

Jaw-opening and other 2nd arch muscles

Facial (VII)

Somitomere 7

Stylopharyngeus

Glossopharyngeal (IX)

Somites 1, 2

Intrinsic laryngeals

Vagus (X)

Somites 2-5

Tongue muscles

Hypoglossal (XII)

Ligaments of the Joint

  • The fibrous capsule is thickened laterally to form the lateral (temporomandibular) ligament. It reinforces the lateral part of this capsule.
  • The base of this triangular ligament is attached to the zygomatic process of the temporal bone and the articular tubercle.
  • Its apex is fixed to the lateral side of the neck of the mandible.
  • Two other ligaments connect the mandible to the cranium but neither provides much strength.
  • The stylomandibular ligament is a thickened band of deep cervical fascia.
  • It runs from the styloid process of the temporal bone to the angle of the mandible and separates the parotid and submandibular salivary glands.
  • The sphenomandibular ligament is a long membranous band that lies medial to the joint.
  • This ligament runs from the spine of the sphenoid bone to the lingula on the medial aspect of the mandible.


-> Most of the facial skeleton is formed by nine bones: four paired (nasal, zygomatic, maxilla, and palatine) and one unpaired (mandible).
-> The calvaria of the new-born infant is large compared with the relatively small fascial skeleton.
-> This results from the small size of the jaws and the almost complete absence of the maxillary and other paranasal sinuses in the new-born skull.
-> These sinuses form large spaces in the adult facial skeleton. As the teeth and sinuses develop during infancy and childhood, the facial bones enlarge.
-> The growth of the maxillae between the ages of 6 and 12 years accounts for the vertical elongation of the child’s face.


The Nasal Bones 

-> These bones may be felt easily because they form the bridge of the nose.
-> The right and left nasal bones articulate with each other at the internasal suture.
-> They also articulate with the frontal bones, the maxillae, and the ethmoid bones.
-> The mobility of the anteroinferior portion of the nose, supported only by cartilages, serves as a partial protection against injure (e.g., a punch in the nose). However, a hard blow to the anterosuperior bony portion of the nose may fracture the nasal bones (broken nose).
-> Often the bones are displaced sideways and/or posteriorly.

The Maxillae 

-> The skeleton of the face between the mouth and the eyes is formed by the two maxillae.
-> They surround the anterior nasal apertures and are united in the medial plane at the intermaxillary suture to form the maxilla (upper jaw).
-> This suture is also visible in the hard palate, where the palatine processes of the maxillae unite.
-> Each adult maxilla consists of: a hollow body that contains a large maxillary sinus; a zygomatic process that articulates with its mate on the other side to form most of the hard palate; and alveolar processes that form sockets for the maxillary (upper) teeth.
-> The maxillae also articulate with the vomer, lacrimal, sphenoid, and palatine bones.
-> The body of the maxilla has a nasal surface that contributes to the lateral wall of the nasal cavity; an orbital surface that forms most of the floor of the orbit; an infratemporal surface that forms the anterior wall of the infratemporal fossa; and an anterior surface that faces partly anteriorly and partly anterolaterally and is covered buy facial muscles.
-> The relatively large infraorbital foramen, which faces inferomedially, is located about 1 cm inferior to the infraorbital margin; it transmits the infraorbital nerve and vessels.
-> The incisive fossa is a shallow concavity overlying the roots of the incisor teeth, just a shallow concavity overlying the roots of the incisor teeth, just inferior to the nasal cavity. This fossa is the injection site for anaesthesia of the maxillary incisor teeth.
-> If infected maxillary teeth are removed, the bone of the alveolar processes of the maxillae begins to be reabsorbed. As a result, the maxilla becomes smaller and the shape of the face changes.
-> Owing to absorption of the alveolar processes, there is a marked reduction in the height of the lower face, which produces deep creases in the facial skin that pass posteriorly from the corners of the mouth.


The Mandible 

-> This is a U-shaped bone and forms the skeleton of the lower jaw and the inferior part of the face. It is the largest and strongest facial bone.
-> The mandibular (lower) teeth project superiorly from their sockets in the alveolar processes.
-> The mandible (L. mandere, to masticate) consists of two parts: a horizontal part called the body, and two vertical oblong parts, called rami.
-> Each ramus ascends almost vertically from the posterior aspect of the body.
-> The superior part of the ramus has two processes: a posterior condylar process with a head or condyle and a neck, and a sharp anterior coronoid process.
-> The condylar process is separated from the coronoid process by the mandibular notch, which forms the concave superior border of the mandible.
-> Viewed from the superior aspect, the mandible is horseshoe-shaped, whereas each half is L-shaped when viewed laterally.
-> The rami and body meet posteriorly at the angle of the mandible.
-> Inferior to the second premolar tooth on each side of the mandible is a mental foramen (L. mentum, chin) for transmission of the mental vessels and the mental nerve.
-> In the anatomical position, the rami of the mandible are almost vertical, except in infants and in edentulous (toothless) adults.
-> On the internal aspect of the ramus, there is a large mandibular foramen.
-> It is the oblong entrance to the mandibular canal that transmits the inferior alveolar vessels and nerve to the roots of the mandibular teeth.
-> Branches of these vessels and the mental nerve emerge from the mandibular canal at the mental foramen.
-> Running inferiorly and slightly anteriorly on the internal surface of the mandible from the mandibular foramen is a small mylohyoid groove (sulcus), which indicates the course taken by the mylohyoid nerve and vessels.
-> These structures arise from the inferior alveolar nerve and vessels, just before they enter the mandibular foramen.
-> The internal surface of the mandible is divided into two areas by the mylohyoid line, which commences posterior to the third molar tooth. -> Just superior to the anterior end of the mylohyoid line are two small, sharp mental spines (genial tubercles), which serve as attachments for the genioglssus muscles.

The Zygomatic Bones 

-> The prominences of the cheeks (L. mala), the anterolateral rims and much of the infraorbital margins of the orbits, are formed by the zygomatic bones (malar bones, cheekbones).
-> They articulate with the frontal, maxilla, sphenoid, and temporal bones.
-> The frontal process of the zygomatic bone passes superiorly, where it forms the lateral border of the orbit (eye socket) and articulates with the frontal bone at the lateral edge of the supraorbital margin.
-> The zygomatic bones articulate medially with the greater wings of the sphenoid bone. The site of their articulation may be observed on the lateral wall of the orbit.
-> On the anterolateral aspect of the zygomatic bone near the infraorbital margin is a small zygomaticofacial foramen for the nerve and vessels of the same name.
-> The posterior surface of the zygomatic bone near the base of its frontal process is pierced by a small zygomaticotemporal foramen for the nerve of the same name.
-> The zygomaticofacial and zygomaticotemporal nerves, leaving the orbit through the previously named foramina, enter the zygomatic bone through small zygomaticoorbital foramina that pierces it orbital surface.
-> The temporal process of the zygomatic bone unites with the zygomatic process of the temporal bone to form the zygomatic arch.
-> This arch can be easily palpated on the side of the head, posterior to the zygomatic prominence (malar eminence) at the inferior boundary of the temporal fossa (temple).
-> The zygomatic arches form one of the useful landmarks for determining the location of the pterion. These arches are especially prominent in emaciated persons.
-> A horizontal plane passing medially from the zygomatic arch separates the temporal fossa superiorly from the infratemporal fossa inferiorly.

Other Bones

There are several other, very important bones in the skull, including the palatine bone, ethmoid bone, vomer, inferior concha and the ossicles of the ear (malleus, incus and stapes). These, however, are covered to greater detail where they are relevant in the head (e.g., ethmoid bone with the orbit and nasal cavity).

 

Explore by Exams