NEET MDS Lessons
Physiology
Remember the following principles before proceeding :
- Reabsorption occurs for most of substances that have been previously filterd .
- The direction of reabsorption is from the tubules to the peritubular capillaries
- All of transport mechanism are used here.
- Different morphology of the cells of different parts of the tubules contribute to reabsorption of different substances .
- There are two routes of reabsorption: Paracellular and transcellular : Paracellular reabsorption depends on the tightness of the tight junction which varies from regeon to region in the nephrons .Transcellular depends on presence of transporters ( carriers and channels for example).
1. Reabsorption of glucose , amino acids , and proteins :
Transport of glucose occurs in the proximal tubule . Cells of proximal tubules are similar to those of the intestinal mucosa as the apical membrane has brush border form to increase the surface area for reabsorption , the cells have plenty of mitochondria which inform us that high amount of energy is required for active transport , and the basolateral membrane of the cells contain sodium -potassium pumps , while the apical membrane contains a lot of carrier and channels .
The tight junction between the tubular cells of the proximal tubules are not that (tight) which allow paracellular transport.
Reabsorption of glucose starts by active transport of Na by the pumps on the basolateral membrane . This will create Na gradient which will cause Na to pass the apical membrane down its concentration gradient . Glucose also passes the membrane up its concentration gradient using sodium -glucose symporter as a secondary active transport.
The concentration of glucose will be increased in the cell and this will enable the glucose to pass down concentration gradient to the interstitium by glucose uniporter . Glucose will then pass to the peritubular capillaries by simple bulk flow.
Remember: Glucose reabsorption occurs via transcellular route .
Glucose transport has transport maximum . In normal situation there is no glucose in the urine , but in uncontrolled diabetes mellitus patients glucose level exceeds its transport maximum (390 mg/dl) and thus will appear in urine .
2. Reabsorption of Amino acids : Use secondary active transport mechanism like glucose.
3. Reabsorption of proteins :
Plasma proteins are not filtered in Bowman capsule but some proteins and peptides in blood may pass the filtration membrane and then reabsorbed . Some peptides are reabsorbed paracellulary , while the others bind to the apical membrane and then enter the cells by endocytosis , where they will degraded by peptidase enzymes to amino acids .
4. Reabsorption of sodium , water , and chloride:
65 % of sodium is reabsorbed in the proximal tubules , while 25% are reabsorbed in the thick ascending limb of loob of Henle , 9% in the distal and collecting tubules and collecting ducts .
90% of sodium reabsorption occurs independently from its plasma level (unregulated) , This is true for sodium reabsorbed in proximal tubule and loop of Henle , while the 9% that is reabsorbed in distal ,collecting tubules and collecting ducts is regulated by Aldosterone.
In proximal tubules : 65% of sodium is reabsorbed . The initial step occurs by creating sodium gradient by sodium-potassium pump on the basolateral membrane . then the sodium will pass from the lumen into the cells down concentration gradient by sodium -glucose symporter , sodium -phosphate symporter and by sodium- hydrogen antiporter and others
After reabsorption of sodium , an electrical gradient will be created , then chloride is reabsorbed following the sodium . Thus the major cation and anion leave the lumen to the the interstitium and thus the water follows by osmosis . 65% of water is reabsorbed in the proximal tubule.
Discending limb of loop of Henle is impermeable to electrolytes but avidly permeable to water . 10 % of water is reabsorbed in the discending thin limb of loob of Henle .
The thick ascending limb of loop of Henly is permeable to electrolytes , due to the presence of Na2ClK syporter . 25% of sodium is reabsorbed here .
In the distal and collecting tubules and the collecting ducts 9% of sodium is reabsorbed .this occurs under aldosterone control depending on sodium plasma level. 1% of sodium is excreted .
Water is not reabsorbed from distal tubule but 5-25% of water is reabsorbed in collecting tubules .
There are three types of muscle tissue, all of which share some common properties:
- Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
- contractility - the response of muscle tissue to stimulation is contraction, or shortening.
- elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
- stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.
The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.
Skeletal muscle
It is found attached to the bones for movement.
cells are long multi-nucleated cylinders.
The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.
All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.
Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.
That means you have willful control over your skeletal muscles.
Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.
Cardiac muscle
This muscle found in the heart.
It is composed of much shorter cells than skeletal muscle which branch to connect to one another.
These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.
This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.
But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.
Visceral muscle is found in the body's internal organs and blood vessels.
It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.
It is found as distinct bands in the walls of blood vessels and as sphincter muscles.
Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well
Functions of the nervous system:
1) Integration of body processes
2) Control of voluntary effectors (skeletal muscles), and mediation of voluntary reflexes.
3) Control of involuntary effectors ( smooth muscle, cardiac muscle, glands) and mediation of autonomic reflexes (heart rate, blood pressure, glandular secretion, etc.)
4) Response to stimuli
5) Responsible for conscious thought and perception, emotions, personality, the mind.
Hypoxia
- Hypoxia is tissue oxygen deficiency
- Brain is the most sensitive tissue to hypoxia: complete lack of oxygen can cause unconsciousness in 15 sec and irreversible damage within 2 min.
- Oxygen delivery and use can be interrupted at several sites
Type of |
O2 Uptake |
Hemoglobin |
Circulation |
Tissue O2 Utilization |
Hypoxic |
Low |
Normal |
Normal |
Normal |
Anemic |
Normal |
Low |
Normal |
Normal |
Ischemic |
Normal |
Normal |
Low |
Normal |
Histotoxic |
Normal |
Normal |
Normal |
Low |
- Causes:
- Hypoxic: high altitude, pulmonary edema, hypoventilation, emphysema, collapsed lung
- Anemic: iron deficiency, hemoglobin mutations, carbon monoxide poisoning
- Ischemic: shock, heart failure, embolism
- Histotoxic: cyanide poisoning (inhibits mitochondria)
- Carbon monoxide (CO) poisoning:
- CO binds to the same heme Fe atoms that O2 binds to
- CO displaces oxygen from hemoglobin because it has a 200X greater affinity for hemoglobin.
- Treatment for CO poisoning: move victim to fresh air. Breathing pure O2 can give faster removal of CO
- Cyanide poisoning:
- Cyanide inhibits the cytochrome oxidase enzyme of mitochondria
- Two step treatment for cyanide poisoning:
- 1) Give nitrites
- Nitrites convert some hemoglobin to methemoglobin. Methemoglobin pulls cyanide away from mitochondria.
- 2) Give thiosulfate.
- Thiosulfate converts the cyanide to less poisonous thiocyanate.
- 1) Give nitrites
A heart rate that is persistently greater than 100bpm is termed tachycardia. A heart rate that is persistantly lower than 60 pulse per min is termed bradycardia. Let's examine some factors that could cause a change in heart rate:
- Increased heart rate can be caused by:
- Increased output of the cardioacceleratory center. In other words, greater activity of sympathetic nerves running to the heart and a greater release of norepinephrine on the heart.
- Decreased output of the cardioinhibitory center. In other words, less vagus nerve activity and a decrease in the release of acetylcholine on the heart.
- Increased release of the hormone epinephrine by the adrenal glands.
- Nicotine.
- Caffeine.
- Hyperthyroidism - i.e., an overactive thyroid gland. This would lead to an increased amount of the hormone thyroxine in the blood.
- Decreased heart rate can be caused by:
- Decreased activity of the cardioacceleratory center.
- Increased activity of the cardioinhibitory center.
- Many others.
Lung volumes and capacities:
I. Lung`s volumes
1. Tidal volume (TV) : is the volume of air m which is inspired and expired during one quiet breathing . It equals to 500 ml.
2. Inspiratory reserve volume (IRV) : The volume of air that could be inspired over and beyond the tidal volume. It equals to 3000 ml of air.
3. Expiratory reserve volume (ERV) : A volume of air that could be forcefully expired after the end of quiet tidal volume. It is about 1100 ml of air.
4. Residual volume (RV) : the extra volume of air that may remain in the lung after the forceful expiration . It is about 1200 ml of air.
5. Minute volume : the volume of air that is inspired or expired within one minute. It is equal to multiplying of respiratory rate by tidal volume = 12X500= 6000 ml.
It is in female lesser than that in male.
II. Lung`s capacities :
1. Inspiratory capacity: TV + IRV
2. Vital capacity : TV+IRV+ERV
3. Total lung capacity : TV+IRV+ERV+RV
4. Emphysema
1. Permanent enlargement of airways with distension of alveolar walls
Thickened Bronchial Submucosa, Edema & Cellular Infiltration (loss of elasticity), Dilation of Air spaces, due to destruction of alveolar walls (Air trapped by obstruction)
2. Lower Respiratory tree destruction
Respiratory Bronchioles, Alveolar ducts, & Alveolar sacs
Types of Emphysema:
1. Centrilobular (Centriacinar) = Respiratory Bronchioles
Rarely seen in non Smokers, More in Men than Women, Found in Smokers with Bronchitis
2. Panlobular (Panacinar)
Hereditary, Single autosomal recessive gene. Deficient in 1-globulin (1-antitrypsin), Protects respiratory tract from neutrophil elastase (Enzyme that distroys lung connective tissue) , Aged persons, Results from Bronchi or Bronchiolar constriction
NOTE: Smoking = Leading cause of Bronchitis, Emphysema