Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Regulation of glomerular filtration :

1. Extrinsic regulation : 

- Neural regulation : sympathetic and parasympathetic nervous system which causes vasoconstriction or vasodilation respectively .
- Humoral regulation : Vasoactive substances may affect the GFR , vasoconstrictive substances like endothelin ,Angiotensin II , Norepinephrine , prostaglandine F2 may constrict the afferent arteriole and thus decrease GFR , while the vasodilative agents like dopamine , NO , ANP , Prostaglandines E2 may dilate the afferent arteriole and thus increase the filtration rate .

2. Intrinsic regulation : 

- Myogenic theory ( as in the intrinsic regulation of cardiac output) .
- Tubuloglomerular feedback: occurs by cells of the juxtaglomerular apparatus that is composed of specific cells of the distal tubules when it passes between afferent and efferent arterioles ( macula densa cells ) , these cells sense changes in flow inside the tubules and inform specific cells in the afferent arteriole (granular cells ) , the later secrete vasoactive substances that affect the diameter of the afferent arteriole.

Typical Concentration Gradients and Membrane Potentials in Excitable Cells

The Na Pump is Particularly Important in the Kidney and Brain

  • All cells have Na pumps in their membranes, but some cells have more than others
  • Over-all Na pump activity may account for a third of your resting energy expenditure!
  • In the kidney the Na pump activity is very high because it is used to regulate body salt and water concentrations
    • Kidneys use enormous amounts of energy: 0.5% of body weight, but use 7% of the oxygen supply
  • Pump activity is also high in the brain because Na and K gradients are essential for nerves
    • The brain is another high energy organ; it is 2% of body weight, but uses 18% of the oxygen supply

In the Resting State Potassium Controls the Membrane Potential of Most Cells

  • Resting cells have more open K channels than other types
  • More K+ passes through membrane than other ions- therefore K+ controls the potential
  • Blood K+ must be closely controlled because small changes will produce large changes in the membrane potentials of cells
    • Raising K will make the membrane potential less negative (depolarization)
  • High blood K+ can cause the heart to stop beating (it goes into permanent contraction)

During an Action Potential Na Channels Open, and Na Controls the Membrane Potential

  • Whichever ion has the most open channels controls the membrane potential
  • Excitable cells have Na channels that open when stimulated
  • When large numbers of these channels open Na controls the membrane potential

There are three types of muscle tissue, all of which share some common properties:

  • Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
  • contractility - the response of muscle tissue to stimulation is contraction, or shortening.
  • elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
  • stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.

 

The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.

Skeletal muscle

It is found attached to the bones for movement.

cells are long multi-nucleated cylinders.

 The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.

 All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.

 Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.

That means you have willful control over your skeletal muscles.

 Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.

 

Cardiac muscle

This muscle found in the heart.

 It is composed of much shorter cells than skeletal muscle which branch to connect to one another.

 These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.

 This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.

But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.

 

Visceral muscle is found in the body's internal organs and blood vessels.

 It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.

It is found as distinct bands in the walls of blood vessels and as sphincter muscles.

Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well

Abnormalities of Salt, Water or pH

  • Examples:
    • Hyperkalemia: caused by kidney disease & medical malpractice
      • High K+ in blood- can stop the heart in contraction (systole)
    • Dehydration: walking in desert- can lose 1-2 liters/hour through sweat
      • Blood becomes too viscous to circulate well -> loss of temperature regulation -> hyperthermia, death
    • Acidosis: many causes including diabetes mellitus and respiratory problems; can cause coma, death

Carbon Dioxide Transport

Carbon dioxide (CO2) combines with water forming carbonic acid, which dissociates into a hydrogen ion (H+) and a bicarbonate ions:

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3

95% of the CO2 generated in the tissues is carried in the red blood cells:

  • It probably enters (and leaves) the cell by diffusing through transmembrane channels in the plasma membrane. (One of the proteins that forms the channel is the D antigen that is the most important factor in the Rh system of blood groups.)
  • Once inside, about one-half of the CO2 is directly bound to hemoglobin (at a site different from the one that binds oxygen).
  • The rest is converted — following the equation above — by the enzyme carbonic anhydrase into
    • bicarbonate ions that diffuse back out into the plasma and
    • hydrogen ions (H+) that bind to the protein portion of the hemoglobin (thus having no effect on pH).

Only about 5% of the CO2 generated in the tissues dissolves directly in the plasma. (A good thing, too: if all the CO2 we make were carried this way, the pH of the blood would drop from its normal 7.4 to an instantly-fatal 4.5!)

When the red cells reach the lungs, these reactions are reversed and CO2 is released to the air of the alveoli.

  • There Are 12 Pairs of Cranial Nerves

  • The 12 pairs of cranial nerves emerge mainly from the ventral surface of the brain
  • Most attach to the medulla, pons or midbrain
  • They leave the brain through various fissures and foramina of the skull
  •  Nerve

     Name

     Sensory

     Motor

     Autonomic
    Parasympathetic

     I

     Olfactory

     Smell

     

     

     II

     Optic

     Vision

     

     

     III

    Oculomotor

     Proprioception

     4 Extrinsic eye muscles

      Pupil constriction
    Accomodation
    Focusing

     IV

     Trochlear

     Proprioception

     1 Extrinsic eye muscle (Sup.oblique)

     

     V

     Trigeminal

     Somatic senses
    (Face, tongue)

     Chewing

     

     VI

    Abducens

     Proprioception

     1 Extrinsic eye muscle (Lat. rectus)

     

     VII

     Facial

     Taste
    Proprioception
     

     Muscles of facial expression

     Salivary glands
    Tear glands

     VIII

     Auditory
    (Vestibulocochlear)

    Hearing, Balance

     

     

     IX

     Glossopharyngeal

     Taste
    Blood gases

     Swallowing
    Gagging

     Salivary glands

     X

     Vagus

    Blood pressure
    Blood gases
     Taste

     Speech
    Swallowing Gagging

    Many visceral organs
    (heart, gut, lungs)

     XI

     Spinal acessory

     Proprioception

     Neck muscles:
    Sternocleidomastoid
    Trapezius

     

     XII

     Hypoglossal

     Proprioception

     Tongue muscles
    Speech

     

     

  • Many of the functions that make us distinctly human are controlled by cranial nerves: special senses, facial expression, speech.
  • Cranial Nerves Contain Sensory, Motor and Parasympathetic Fibers

     

Platelets

Platelets are cell fragments produced from megakaryocytes.

Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.

When blood vessels are damaged, fibrils of collagen are exposed.

  • von Willebrand factor links the collagen to platelets forming a plug of platelets there.
  • The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
  • (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)

ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.

Explore by Exams