NEET MDS Lessons
Physiology
Control of processes in the stomach:
The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:
Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.
Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.
Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.
These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.
Regulation of Blood Pressure by Hormones
The Kidney
One of the functions of the kidney is to monitor blood pressure and take corrective action if it should drop. The kidney does this by secreting the proteolytic enzyme renin.
- Renin acts on angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I.
- angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE) — producing angiotensin II, which contains 8 amino acids.
- angiotensin II
- constricts the walls of arterioles closing down capillary beds;
- stimulates the proximal tubules in the kidney to reabsorb sodium ions;
- stimulates the adrenal cortex to release aldosterone. Aldosterone causes the kidneys to reclaim still more sodium and thus water.
- increases the strength of the heartbeat;
- stimulates the pituitary to release the antidiuretic hormone (ADH, also known as arginine vasopressin).
All of these actions, which are mediated by its binding to G-protein-coupled receptors on the target cells, lead to an increase in blood pressure.
Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract
→ Inherited, autosomal recessive gene, most common fatal genetic disorder
→ Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)
→ Family history of Cystic Fibrosis
→ Respiratory Infections & G.I.Tract malabsorption
→ Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→ Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)
Asthma = Reversible Bronchioconstruction 4%-5% of population
Extrinsic / Atopic = Allergic, inherited (familia), chromosome 11
IgE, Chemical Mediators of inflammation
a. Intrinsic = Negative for Allergy, Normal IgE, Negative Allergic Tests
Nucleotide Imbalance cAMP/cGMP: cAMP = Inhibits mediator release, cGMP = Facilitates mediator release
b. Intolerance to Asprin (Triad Asthma)
c. Nasal Polyps & Asthma
d. Treatment cause, Symptoms in Acute Asthma
1. Bronchial dilators
2. steroids edema from Inflamation
3. Bronchiohygene to prevent Secondary Infection, (Remove Excess Mucus)
4. Education
Maintenance of Homeostasis
The kidneys maintain the homeostasis of several important internal conditions by controlling the excretion of substances out of the body.
Ions. The kidney can control the excretion of potassium, sodium, calcium, magnesium, phosphate, and chloride ions into urine. In cases where these ions reach a higher than normal concentration, the kidneys can increase their excretion out of the body to return them to a normal level. Conversely, the kidneys can conserve these ions when they are present in lower than normal levels by allowing the ions to be reabsorbed into the blood during filtration. (See more about ions.)
pH. The kidneys monitor and regulate the levels of hydrogen ions (H+) and bicarbonate ions in the blood to control blood pH. H+ ions are produced as a natural byproduct of the metabolism of dietary proteins and accumulate in the blood over time. The kidneys excrete excess H+ ions into urine for elimination from the body. The kidneys also conserve bicarbonate ions, which act as important pH buffers in the blood.
Osmolarity. The cells of the body need to grow in an isotonic environment in order to maintain their fluid and electrolyte balance. The kidneys maintain the body’s osmotic balance by controlling the amount of water that is filtered out of the blood and excreted into urine. When a person consumes a large amount of water, the kidneys reduce their reabsorption of water to allow the excess water to be excreted in urine. This results in the production of dilute, watery urine. In the case of the body being dehydrated, the kidneys reabsorb as much water as possible back into the blood to produce highly concentrated urine full of excreted ions and wastes. The changes in excretion of water are controlled by antidiuretic hormone (ADH). ADH is produced in the hypothalamus and released by the posterior pituitary gland to help the body retain water.
Blood Pressure. The kidneys monitor the body’s blood pressure to help maintain homeostasis. When blood pressure is elevated, the kidneys can help to reduce blood pressure by reducing the volume of blood in the body. The kidneys are able to reduce blood volume by reducing the reabsorption of water into the blood and producing watery, dilute urine. When blood pressure becomes too low, the kidneys can produce the enzyme renin to constrict blood vessels and produce concentrated urine, which allows more water to remain in the blood.
Structure and function of skeletal muscle.
Skeletal muscles have a belly which contains the cells and which attaches by means of tendons or aponeuroses to a bone or other tissue. An aponeurosis is a broad, flat, tendinous attachment, usually along the edge of a muscle. A muscle attaches to an origin and an insertion. The origin is the more fixed attachment, the insertion is the more movable attachment. A muscle acts to shorten, pulling the insertion toward the origin. A muscle can only pull, it cannot push.
Muscles usually come in pairs of antagonistic muscles. The muscle performing the prime movement is the agonist, the opposite acting muscle is the antagonist. When the movement reverses, the names reverse. For example, in flexing the elbow the biceps brachii is the agonist, the triceps brachii is the antagonist. When the movement changes to extension of the elbow, the triceps becomes the agonist and the biceps the antagonist. An antagonist is never totally relaxed. Its function is to provide control and damping of movement by maintaining tone against the agonist. This is called eccentric movement.
Muscles can also act as synergists, working together to perform a movement. This movement can be different from that performed when the muscles work independently. For example, the sternocleidomastoid muscles each rotate the head in a different direction. But as synergists they flex the neck.
Fixators act to keep a part from moving. For example fixators act as postural muscles to keep the spine erect and the leg and vertebral column extended when standing. Fixators such as the rhomboids and levator scapulae keep the scapula from moving during actions such as lifting with the arms.
Blood Pressure
Blood moves through the arteries, arterioles, and capillaries because of the force created by the contraction of the ventricles.
Blood pressure in the arteries.
The surge of blood that occurs at each contraction is transmitted through the elastic walls of the entire arterial system where it can be detected as the pulse. Even during the brief interval when the heart is relaxed — called diastole — there is still pressure in the arteries. When the heart contracts — called systole — the pressure increases.
Blood pressure is expressed as two numbers, e.g., 120/80.
Blood pressure in the capillaries
The pressure of arterial blood is largely dissipated when the blood enters the capillaries. Capillaries are tiny vessels with a diameter just about that of a red blood cell (7.5 µm). Although the diameter of a single capillary is quite small, the number of capillaries supplied by a single arteriole is so great that the total cross-sectional area available for the flow of blood is increased. Therefore, the pressure of the blood as it enters the capillaries decreases.
Blood pressure in the veins
When blood leaves the capillaries and enters the venules and veins, little pressure remains to force it along. Blood in the veins below the heart is helped back up to the heart by the muscle pump. This is simply the squeezing effect of contracting muscles on the veins running through them. One-way flow to the heart is achieved by valves within the veins
Exchanges Between Blood and Cells
With rare exceptions, our blood does not come into direct contact with the cells it nourishes. As blood enters the capillaries surrounding a tissue space, a large fraction of it is filtered into the tissue space. It is this interstitial or extracellular fluid (ECF) that brings to cells all of their requirements and takes away their products. The number and distribution of capillaries is such that probably no cell is ever farther away than 50 µm from a capillary.
When blood enters the arteriole end of a capillary, it is still under pressure produced by the contraction of the ventricle. As a result of this pressure, a substantial amount of water and some plasma proteins filter through the walls of the capillaries into the tissue space.
Thus fluid, called interstitial fluid, is simply blood plasma minus most of the proteins. (It has the same composition and is formed in the same way as the nephric filtrate in kidneys.)
Interstitial fluid bathes the cells in the tissue space and substances in it can enter the cells by diffusion or active transport. Substances, like carbon dioxide, can diffuse out of cells and into the interstitial fluid.
Near the venous end of a capillary, the blood pressure is greatly reduced .Here another force comes into play. Although the composition of interstitial fluid is similar to that of blood plasma, it contains a smaller concentration of proteins than plasma and thus a somewhat greater concentration of water. This difference sets up an osmotic pressure. Although the osmotic pressure is small, it is greater than the blood pressure at the venous end of the capillary. Consequently, the fluid reenters the capillary here.
Control of the Capillary Beds
An adult human has been estimated to have some 60,000 miles of capillaries with a total surface area of some 800–1000 m2. The total volume of this system is roughly 5 liters, the same as the total volume of blood. However, if the heart and major vessels are to be kept filled, all the capillaries cannot be filled at once. So a continual redirection of blood from organ to organ takes place in response to the changing needs of the body. During vigorous exercise, for example, capillary beds in the skeletal muscles open at the expense of those in the viscera. The reverse occurs after a heavy meal.
The walls of arterioles are encased in smooth muscle. Constriction of arterioles decreases blood flow into the capillary beds they supply while dilation has the opposite effect. In time of danger or other stress, for example, the arterioles supplying the skeletal muscles will be dilated while the bore of those supplying the digestive organs will decrease. These actions are carried out by
- the autonomic nervous system.
- local controls in the capillary beds