NEET MDS Lessons
Physiology
Serum Lipids
LIPID |
Typical values (mg/dl) |
Desirable (mg/dl) |
Cholesterol (total) |
170–210 |
<200 |
LDL cholesterol |
60–140 |
<100 |
HDL cholesterol |
35–85 |
>40 |
Triglycerides |
40–160 |
<160 |
- Total cholesterol is the sum of
- HDL cholesterol
- LDL cholesterol and
- 20% of the triglyceride value
- Note that
- high LDL values are bad, but
- high HDL values are good.
- Using the various values, one can calculate a
cardiac risk ratio = total cholesterol divided by HDL cholesterol - A cardiac risk ratio greater than 7 is considered a warning.
Urine is a waste byproduct formed from excess water and metabolic waste molecules during the process of renal system filtration. The primary function of the renal system is to regulate blood volume and plasma osmolarity, and waste removal via urine is essentially a convenient way that the body performs many functions using one process. Urine formation occurs during three processes:
Filtration
Reabsorption
Secretion
Filtration
During filtration, blood enters the afferent arteriole and flows into the glomerulus where filterable blood components, such as water and nitrogenous waste, will move towards the inside of the glomerulus, and nonfilterable components, such as cells and serum albumins, will exit via the efferent arteriole. These filterable components accumulate in the glomerulus to form the glomerular filtrate.
Normally, about 20% of the total blood pumped by the heart each minute will enter the kidneys to undergo filtration; this is called the filtration fraction. The remaining 80% of the blood flows through the rest of the body to facilitate tissue perfusion and gas exchange.
Reabsorption
The next step is reabsorption, during which molecules and ions will be reabsorbed into the circulatory system. The fluid passes through the components of the nephron (the proximal/distal convoluted tubules, loop of Henle, the collecting duct) as water and ions are removed as the fluid osmolarity (ion concentration) changes. In the collecting duct, secretion will occur before the fluid leaves the ureter in the form of urine.
Secretion
During secretion some substances±such as hydrogen ions, creatinine, and drugs—will be removed from the blood through the peritubular capillary network into the collecting duct. The end product of all these processes is urine, which is essentially a collection of substances that has not been reabsorbed during glomerular filtration or tubular reabsorbtion.
Sensory pathways include only those routes which conduct information to the conscious cortex of the brain. However, we will use the term in its more loosely and commonly applied context to include input from all receptors, whether their signals reach the conscious level or not.
Levels of Organization:
CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level
CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)
TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues
ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)
SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.
There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.
Bleeding Disorders
A deficiency of a clotting factor can lead to uncontrolled bleeding.
The deficiency may arise because
- not enough of the factor is produced or
- a mutant version of the factor fails to perform properly.
Examples:
- von Willebrand disease (the most common)
- hemophilia A for factor 8 deficiency
- hemophilia B for factor 9 deficiency.
- hemophilia C for factor 11 deficiency
In some cases of von Willebrand disease, either a deficient level or a mutant version of the factor eliminates its protective effect on factor 8. The resulting low level of factor 8 mimics hemophilia A.
Ventilation simply means inhaling and exhaling of air from the atmospheric air into lungs and then exhaling it from the lung into the atmospheric air.
Air pressure gradient has to exist between two atmospheres to enable a gas to move from one atmosphere to an other.
During inspiration: the intrathoracic pressure has to be less than that of atmospheric pressure. This could be achieved by decreasing the intrathoracic pressure as follows:
Depending on Boyle`s law , the pressure of gas is inversely proportional to the volume of its container. So increasing the intrathoracic volume will decrease the intrathoracic pressure which will allow the atmospheric air to be inhaled (inspiration) . As decreasing the intrathoracic volume will increase the intrathoracic pressure and causes exhaling of air ( expiration)
So. Inspiration could be actively achieved by the contraction of inspiratory muscles : diaphragm and intercostal muscles. While relaxation of the mentioned muscles will passively cause expiration.
Contraction of diaphragm will pull the diaphragm down the abdominal cavity ( will move inferiorly) , and then increase the intrathoracic volume ( vertically) . Contraction of external intercostal muscle will pull the ribs upward and forward which will additionally increase the intrathoracic volume ( transversely , the net result will be increasing the intrathoracic volume and decreasing the intrathoracic pressure.
Relaxation of diaphragm will move it superiorly during expiration, the relaxation of external intercostal muscles will pull the ribs downward and backward , and the elastic lungs and chest wall will recoil. The net result is decreasing the intrathoracic volume and increasing intrathoracic pressure.
All of this occurs during quiet breathing. During forceful inspiration an accessory inspiratory muscle will be involved ( scaleni , sternocleidomastoid , and others) to increase negativity in the intrathoracic pressure more and more.
During forceful expiration the accessory expiratory muscles ( internal intercostal muscles and abdominal muscles ) will be involved to decrease the intrathoracic volume more and more and then to increase intrathoracic pressure more and more.
The pressure within the alveoli is called intralveolar pressure . Between the two phases of respiration it is equal to the atmospheric pressure. It is decreased during inspiration ( about 1 cm H2O ) and increased during expiration ( about +1 cm H2O ) . This difference allow entering of 0.5 L of air into the lungs.
Intrapleural pressure is the pressure of thin fluid between the two pleural layers . It is a slight negative pressure. At the beginning of inspiration it is about -5 cm H2O and reachs -7.5 cm H2O at the end or inspiration.
At the beginning of expiration the intrapleural pressure is -7.5 cm H2O and reaches -5 cmH2O at the end of expiration.
The difference between intralveolar pressure and intrapleural pressure is called transpulmonary pressure.
Factors , affecting ventilation :
Resistance : Gradual decreasing of the diameter of respiratory airway increase the resistance to air flow.
Compliance : means the ease , which the lungs expand.It depends on both the elastic forces of the lungs and the elastic forces , caused by the the surface tension of the fluid, lining the alveoli.
Surface tension: Molecules of water have tendency to attract each other on the surface of water adjacent to air. In alveoli the surface tension caused by the fluid in the inner surface of the alveoli may cause collapse of alveoli . The surface tension is decreased by the surfactant .
Surfactant is a mixture of phospholipids , proteins and ion m produced by type II pneumocytes.
Immature newborns may suffer from respiratory distress syndrome , due to lack of surfactant which is produced during the last trimester of pregnancy.
The elastic fibers of the thoracic wall also participate in lung compliance.
Lung volumes and capacities:
I. Lung`s volumes
1. Tidal volume (TV) : is the volume of air m which is inspired and expired during one quiet breathing . It equals to 500 ml.
2. Inspiratory reserve volume (IRV) : The volume of air that could be inspired over and beyond the tidal volume. It equals to 3000 ml of air.
3. Expiratory reserve volume (ERV) : A volume of air that could be forcefully expired after the end of quiet tidal volume. It is about 1100 ml of air.
4. Residual volume (RV) : the extra volume of air that may remain in the lung after the forceful expiration . It is about 1200 ml of air.
5. Minute volume : the volume of air that is inspired or expired within one minute. It is equal to multiplying of respiratory rate by tidal volume = 12X500= 6000 ml.
It is in female lesser than that in male.
II. Lung`s capacities :
1. Inspiratory capacity: TV + IRV
2. Vital capacity : TV+IRV+ERV
3. Total lung capacity : TV+IRV+ERV+RV