NEET MDS Lessons
Physiology
Levels of Organization:
CHEMICAL LEVEL - includes all chemical substances necessary for life (see, for example, a small portion - a heme group - of a hemoglobin molecule); together form the next higher level
CELLULAR LEVEL - cells are the basic structural and functional units of the human body & there are many different types of cells (e.g., muscle, nerve, blood)
TISSUE LEVEL - a tissue is a group of cells that perform a specific function and the basic types of tissues in the human body include epithelial, muscle, nervous, and connective tissues
ORGAN LEVEL - an organ consists of 2 or more tissues that perform a particular function (e.g., heart, liver, stomach)
SYSTEM LEVEL - an association of organs that have a common function; the major systems in the human body include digestive, nervous, endocrine, circulatory, respiratory, urinary, and reproductive.
There are two types of cells that make up all living things on earth: prokaryotic and eukaryotic. Prokaryotic cells, like bacteria, have no 'nucleus', while eukaryotic cells, like those of the human body, do.
GENERAL SOMATIC AFFERENT (GSA) PATHWAYS FROM THE BODY
Pain and Temperature
Pain and temperature information from general somatic receptors is conducted over small-diameter (type A delta and type C) GSA fibers of the spinal nerves into the posterior horn of the spinal cord gray matter .
Fast and Slow Pain
Fast pain, often called sharp or pricking pain, is usually conducted to the CNS over type A delta fibers.
Slow pain, often called burning pain, is conducted to the CNS over smaller-diameter type C fibers.
Touch and Pressure
Touch can be subjectively described as discriminating or crude.
Discriminating (epicritic) touch implies an awareness of an object's shape, texture, three-dimensional qualities, and other fine points. Ability to recognize familiar objects simply by tactile manipulation.
The conscious awareness of body position and movement is called the kinesthetic sens
Crude (protopathic) touch, lacks the fine discrimination described above and doesn't generally give enough information to the brain to enable it to recognize a familiar object by touch alone.
Subconscious Proprioception
Most of the subconscious proprioceptive input is shunted to the cerebellum.
Posterior Funiculus Injury
Certain clinical signs are associated with injury to the dorsal columns.
As might be expected, these are generally caused by impairment to the kinesthetic sense and discriminating touch and pressure pathways.
They include
(1) the inability to recognize limb position,
(2) astereognosis,
(3) loss of two-point discrimination,
(4) loss of vibratory sense, and
(5) a positive Romberg sign.
Astereognosis is the inability to recognize familiar objects by touch alone. When asked to stand erect with feet together and eyes closed, a person with dorsal column damage may sway and fall. This is a positive Romberg sign.
The pancreas
The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.
Pancreatic fluid contains:
- sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
- pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
- pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
- 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
- trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
- chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
- elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
- carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
- nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.
The secretion of pancreatic fluid is controlled by two hormones:
- secretin, which mainly affects the release of sodium bicarbonate, and
- cholecystokinin (CCK), which stimulates the release of the digestive enzymes.
Neural Substrates of Breathing
A. Medulla Respiratory Centers
Inspiratory Center (Dorsal Resp Group - rhythmic breathing) → phrenic nerve→ intercostal nerves→ diaphragm + external intercostals
Expiratory Center (Ventral Resp Group - forced expiration) → phrenic nerve → intercostal nerves → internal intercostals + abdominals (expiration)
1. eupnea - normal resting breath rate (12/minute)
2. drug overdose - causes suppression of Inspiratory Center
B. Pons Respiratory Centers
1. pneumotaxic center - slightly inhibits medulla, causes shorter, shallower, quicker breaths
2. apneustic center - stimulates the medulla, causes longer, deeper, slower breaths
C. Control of Breathing Rate & Depth
1. breathing rate - stimulation/inhibition of medulla
2. breathing depth - activation of inspiration muscles
3. Hering-Breuer Reflex - stretch of visceral pleura that lungs have expanded (vagal nerve)
D. Hypothalamic Control - emotion + pain to the medulla
E. Cortex Controls (Voluntary Breathing) - can override medulla as during singing and talking
The Nervous System Has Peripheral and Central Units
- The central nervous system (CNS) is the brain and spinal column
- The peripheral nervous system (PNS) consists of nerves outside of the CNS
- There are 31 pairs of spinal nerves (mixed motor & sensory)
- There are 12 pairs of cranial nerves (some are pure sensory, but most are mixed)
The pattern of innervation plotted on the skin is called a dermatome
The Nervous System Has Peripheral and Central Units
- The central nervous system (CNS) is the brain and spinal column
- The peripheral nervous system (PNS) consists of nerves outside of the CNS
- There are 31 pairs of spinal nerves (mixed motor & sensory)
- There are 12 pairs of cranial nerves (some are pure sensory, but most are mixed)
The pattern of innervation plotted on the skin is called a dermatome
Structural Divisions of the nervous system:
1) Central Nervous System (CNS) - the brain and spinal cord.
2) Peripheral Nervous System (PNS) - the nerves, ganglia, receptors, etc
Maintenance of Homeostasis
The kidneys maintain the homeostasis of several important internal conditions by controlling the excretion of substances out of the body.
Ions. The kidney can control the excretion of potassium, sodium, calcium, magnesium, phosphate, and chloride ions into urine. In cases where these ions reach a higher than normal concentration, the kidneys can increase their excretion out of the body to return them to a normal level. Conversely, the kidneys can conserve these ions when they are present in lower than normal levels by allowing the ions to be reabsorbed into the blood during filtration. (See more about ions.)
pH. The kidneys monitor and regulate the levels of hydrogen ions (H+) and bicarbonate ions in the blood to control blood pH. H+ ions are produced as a natural byproduct of the metabolism of dietary proteins and accumulate in the blood over time. The kidneys excrete excess H+ ions into urine for elimination from the body. The kidneys also conserve bicarbonate ions, which act as important pH buffers in the blood.
Osmolarity. The cells of the body need to grow in an isotonic environment in order to maintain their fluid and electrolyte balance. The kidneys maintain the body’s osmotic balance by controlling the amount of water that is filtered out of the blood and excreted into urine. When a person consumes a large amount of water, the kidneys reduce their reabsorption of water to allow the excess water to be excreted in urine. This results in the production of dilute, watery urine. In the case of the body being dehydrated, the kidneys reabsorb as much water as possible back into the blood to produce highly concentrated urine full of excreted ions and wastes. The changes in excretion of water are controlled by antidiuretic hormone (ADH). ADH is produced in the hypothalamus and released by the posterior pituitary gland to help the body retain water.
Blood Pressure. The kidneys monitor the body’s blood pressure to help maintain homeostasis. When blood pressure is elevated, the kidneys can help to reduce blood pressure by reducing the volume of blood in the body. The kidneys are able to reduce blood volume by reducing the reabsorption of water into the blood and producing watery, dilute urine. When blood pressure becomes too low, the kidneys can produce the enzyme renin to constrict blood vessels and produce concentrated urine, which allows more water to remain in the blood.