NEET MDS Lessons
Physiology
SPECIAL SOMATIC AFFERENT (SSA) PATHWAYS
Hearing
The organ of Corti with its sound-sensitive hair cells and basilar membrane are important parts of the sound transducing system for hearing. Mechanical vibrations of the basilar membrane generate membrane potentials in the hair cells which produce impulse patterns in the cochlear portion of the vestibulocochlear nerve (VIII)
Special somatic nerve fibers of cranial nerve VIII relay impulses from the sound receptors (hair cells) in the cochlear nuclei of the brainstem
These are bipolar neurons with cell bodies located in the spiral ganglia of the cochlea.
Vestibular System
The vestibulocochlear nerve serves two quite different functions.
The cochlear portion, conducts sound information to the brain,
The vestibular portion conducts proprioceptive information.
It is the central neural pathways
Special somatic afferent fibers from the hair cells of the macula utriculi and macula sacculi conduct information into the vestibular nuclei on the ipsilateral side of the pons and medulla.
These are bipolar neurons with cell bodies located in the vestibular ganglion.
Some of the fibers project directly into the ipsilateral cerebellum to terminate in the uvula, flocculus, and nodulus, but most enter the vestibular nuclei and synapse there.
Vision
The visual system receptors are the rods and cones of the retina.
Special somatic afferent fibers of the optic nerve (II) conduct visual signals into the brain
Fibers from the lateral (temporal) retina of either eye terminate in the lateral geniculate body on the same side of the brain as that eye.
SSA II fibers from the medial (nasal) retina of each eye cross over in the optic chiasm to terminate in the contralateral lateral geniculate body.
Area 17 is the primary visual area, which receives initial visual signals.
Neurons from this area project into the adjacent occipital cortex (areas 18 and 19) which is known as the secondary visual area. It is here that the visual signal is fully evaluated.
The visual reflex pathway involving the pupillary light reflex - in which the pupils constrict when a light is shined into the eyes and dilate when the light is removed.
Some SSA II fibers leave the optic tract before reaching the lateral geniculates, terminating in the superior colliculi instead.
From here, short neurons project to the EdingerWestphal nucleus (an accessory nucleus of III) in the midbrain, which serves as the origin of the preganglionic parasympathetic fibers of the oculomotor nerve (GVE III).
The GVE III fibers in turn project to the ciliary ganglia, from which arise the postganglionic fibers to the sphincter muscles of the iris, which constrict the pupils.
The small intestine
Digestion within the small intestine produces a mixture of disaccharides, peptides, fatty acids, and monoglycerides. The final digestion and absorption of these substances occurs in the villi, which line the inner surface of the small intestine.
This scanning electron micrograph (courtesy of Keith R. Porter) shows the villi carpeting the inner surface of the small intestine.
The crypts at the base of the villi contain stem cells that continuously divide by mitosis producing
- more stem cells
- cells that migrate up the surface of the villus while differentiating into
- columnar epithelial cells (the majority). They are responsible for digestion and absorption.
- goblet cells, which secrete mucus;
- endocrine cells, which secrete a variety of hormones;
- Paneth cells, which secrete antimicrobial peptides that sterilize the contents of the intestine.
All of these cells replace older cells that continuously die by apoptosis.
The villi increase the surface area of the small intestine to many times what it would be if it were simply a tube with smooth walls. In addition, the apical (exposed) surface of the epithelial cells of each villus is covered with microvilli (also known as a "brush border"). Thanks largely to these, the total surface area of the intestine is almost 200 square meters, about the size of the singles area of a tennis court and some 100 times the surface area of the exterior of the body.
Incorporated in the plasma membrane of the microvilli are a number of enzymes that complete digestion:
- aminopeptidases attack the amino terminal (N-terminal) of peptides producing amino acids.
- disaccharidasesThese enzymes convert disaccharides into their monosaccharide subunits.
- maltase hydrolyzes maltose into glucose.
- sucrase hydrolyzes sucrose (common table sugar) into glucose and fructose.
- lactase hydrolyzes lactose (milk sugar) into glucose and galactose.
Fructose simply diffuses into the villi, but both glucose and galactose are absorbed by active transport.
- fatty acids and monoglycerides. These become resynthesized into fats as they enter the cells of the villus. The resulting small droplets of fat are then discharged by exocytosis into the lymph vessels, called lacteals, draining the villi.
- it's the individual pressure exerted independently by a particular gas within a mixture of gasses. The air we breath is a mixture of gasses: primarily nitrogen, oxygen, & carbon dioxide. So, the air you blow into a balloon creates pressure that causes the balloon to expand (& this pressure is generated as all the molecules of nitrogen, oxygen, & carbon dioxide move about & collide with the walls of the balloon). However, the total pressure generated by the air is due in part to nitrogen, in part to oxygen, & in part to carbon dioxide. That part of the total pressure generated by oxygen is the 'partial pressure' of oxygen, while that generated by carbon dioxide is the 'partial pressure' of carbon dioxide. A gas's partial pressure, therefore, is a measure of how much of that gas is present (e.g., in the blood or alveoli).
- the partial pressure exerted by each gas in a mixture equals the total pressure times the fractional composition of the gas in the mixture. So, given that total atmospheric pressure (at sea level) is about 760 mm Hg and, further, that air is about 21% oxygen, then the partial pressure of oxygen in the air is 0.21 times 760 mm Hg or 160 mm Hg.
Function of Blood
- transport through the body of
- oxygen and carbon dioxide
- food molecules (glucose, lipids, amino acids)
- ions (e.g., Na+, Ca2+, HCO3−)
- wastes (e.g., urea)
- hormones
- heat
- defense of the body against infections and other foreign materials. All the WBCs participate in these defenses
A heart rate that is persistently greater than 100bpm is termed tachycardia. A heart rate that is persistantly lower than 60 pulse per min is termed bradycardia. Let's examine some factors that could cause a change in heart rate:
- Increased heart rate can be caused by:
- Increased output of the cardioacceleratory center. In other words, greater activity of sympathetic nerves running to the heart and a greater release of norepinephrine on the heart.
- Decreased output of the cardioinhibitory center. In other words, less vagus nerve activity and a decrease in the release of acetylcholine on the heart.
- Increased release of the hormone epinephrine by the adrenal glands.
- Nicotine.
- Caffeine.
- Hyperthyroidism - i.e., an overactive thyroid gland. This would lead to an increased amount of the hormone thyroxine in the blood.
- Decreased heart rate can be caused by:
- Decreased activity of the cardioacceleratory center.
- Increased activity of the cardioinhibitory center.
- Many others.
Biological Functions are Extremely Sensitive to pH
- H+ and OH- ions get special attention because they are very reactive
- Substance which donates H+ ions to solution = acid
- Substance which donates OH- ions to solution = base
- Because we deal with H ions over a very wide range of concentration, physiologists have devised a logarithmic unit, pH, to deal with it
- pH = - log [H+]
- [H+] is the H ion concentration in moles/liter
- Because of the way it is defined a high pH indicates low H ion and a low pH indicates high H ion- it takes a while to get used to the strange definition
- Also because of the way it is defined, a change of 1 pH unit means a 10X change in the concentration of H ions
- If pH changes by 2 units the H+ concentration changes by 10 X 10 = 100 times
- Human blood pH is 7.4
- Blood pH above 7.4 = alkalosis
- Blood pH below 7.4 = acidosis
- Body must get rid of ~15 moles of potential acid/day (mostly CO2)
- CO2 reacts with water to form carbonic acid (H2CO3)
- Done mostly by lungs & kidney
- In neutralization H+ and OH- react to form water
- If the pH changes charges on molecules also change, especially charges on proteins
- This changes the reactivity of proteins such as enzymes
- Large pH changes occur as food passes through the intestines.
Clinical Physiology
Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .
To understand the pathophysiology of the heart failure , lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume
Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .
Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .
Contractility : Reducing the power of contraction such as in myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .
Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.
Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff .
The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .