NEET MDS Lessons
Physiology
Lipids:
- about 40% of the dry mass of a typical cell
- composed largely of carbon & hydrogen
- generally insoluble in water
- involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
- Subclasses include:
- Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
- phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes
steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol
Pain, Temperature, and Crude Touch and Pressure
General somatic nociceptors, thermoreceptors, and mechanoreceptors sensitive to crude touch and pressure from the face conduct signals to the brainstem over GSA fibers of cranial nerves V, VII, IX, and X.
The afferent fibers involved are processes of monopolar neurons with cell bodies in the semilunar, geniculate, petrosal, and nodose ganglia, respectively.
The central processes of these neurons enter the spinal tract of V, where they descend through the brainstem for a short distance before terminating in the spinal nucleus of V.
Second-order neurons then cross over the opposite side of the brainstem at various levels to enter the ventral trigeminothalamic tract, where they ascend to the VPM of the thalamus.
Finally, third-order neurons project to the "face" area of the cerebral cortex in areas 3, 1, and 2 .
Discriminating Touch and Pressure
Signals are conducted from general somatic mechanoreceptors over GSA fibers of the trigeminal nerve into the principal sensory nucleus of V, located in the middle pons.
Second-order neurons then conduct the signals to the opposite side of the brainstem, where they ascend in the medial lemniscus to the VPM of the thalamus.
Thalamic neurons then project to the "face" region of areas 3, I, and 2 of the cerebral cortex.
Kinesthesia and Subconscious Proprioception
Proprioceptive input from the face is primarily conducted over GSA fibers of the trigeminal nerve.
The peripheral endings of these neurons are the general somatic mechanoreceptors sensitive to both conscious (kinesthetic) and subconscious proprioceptive input.
Their central processes extend from the mesencephalic nucleus to the principal sensory nucleus of V in the pons
The subconscious component is conducted to the cerebellum, while the conscious component travels to the cerebral cortex.
Certain second-order neurons from the principal sensory nucleus relay proprioceptive information concerning subconscious evaluation and integration into the ipsilateral cerebellum.
Other second-order neurons project to the opposite side of the pons and ascend to the VPM of the thalamus as the dorsal trigeminothalamic tract.
Thalamic projections terminate in the face area of the cerebral cortex.
The thyroid gland is a double-lobed structure located in the neck. Embedded in its rear surface are the four parathyroid glands.
The Thyroid Gland
The thyroid gland synthesizes and secretes:
- thyroxine (T4) and
- calcitonin
T4 and T3
Thyroxine (T4 ) is a derivative of the amino acid tyrosine with four atoms of iodine. In the liver, one atom of iodine is removed from T4 converting it into triiodothyronine (T3). T3 is the active hormone. It has many effects on the body. Among the most prominent of these are:
- an increase in metabolic rate
- an increase in the rate and strength of the heart beat.
The thyroid cells responsible for the synthesis of T4 take up circulating iodine from the blood. This action, as well as the synthesis of the hormones, is stimulated by the binding of TSH to transmembrane receptors at the cell surface.
Diseases of the thyroid
1. hypothyroid diseases; caused by inadequate production of T3
- cretinism: hypothyroidism in infancy and childhood leads to stunted growth and intelligence. Can be corrected by giving thyroxine if started early enough.
- myxedema: hypothyroidism in adults leads to lowered metabolic rate and vigor. Corrected by giving thyroxine.
- goiter: enlargement of the thyroid gland. Can be caused by:
- inadequate iodine in the diet with resulting low levels of T4 and T3;
- an autoimmune attack against components of the thyroid gland (called Hashimoto's thyroiditis).
2. hyperthyroid diseases; caused by excessive secretion of thyroid hormones
Graves´ disease. Autoantibodies against the TSH receptor bind to the receptor mimicking the effect of TSH binding. Result: excessive production of thyroid hormones. Graves´ disease is an example of an autoimmune disease.
Osteoporosis. High levels of thyroid hormones suppress the production of TSH through the negative-feedback mechanism mentioned above. The resulting low level of TSH causes an increase in the numbers of bone-reabsorbing osteoclasts resulting in osteoporosis.
Calcitonin
Calcitonin is a polypeptide of 32 amino acids. The thyroid cells in which it is synthesized have receptors that bind calcium ions (Ca2+) circulating in the blood. These cells monitor the level of circulating Ca2+. A rise in its level stimulates the cells to release calcitonin.
- bone cells respond by removing Ca2+ from the blood and storing it in the bone
- kidney cells respond by increasing the excretion of Ca2+
Both types of cells have surface receptors for calcitonin.
Because it promotes the transfer of Ca2+ to bones, calcitonin has been examined as a possible treatment for osteoporosis
Functions
Manufacture - blood proteins - albumen, clotting proteins , urea - nitrogenous waste from amino acid metabolism , bile - excretory for the bile pigments, emulsification of fats by bile salts
Storage - glycogen , iron - as hemosiderin and ferritin , fat soluble vitamins A, D, E, K
Detoxification -alcohol , drugs and medicines , environmental toxins
Protein metabolism -
- transamination - removing the amine from one amino acid and using it to produce a different amino acid. The body can produce all but the essential amino acids; these must be included in the diet.
- deamination - removal of the amine group in order to catabolize the remaining keto acid. The amine group enters the blood as urea which is excreted through the kidneys.
Glycemic Regulation - the management of blood glucose.
- glycogenesis - the conversion of glucose into glycogen.
- glycogenolysis - the breakdown of glycogen into glucose.
gluconeogenesis - the manufacture of glucose from non carbohydrate sources, mostly protein
The hepatic portal system
The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:
- Glucose is removed and converted into glycogen.
- Other monosaccharides are removed and converted into glucose.
- Excess amino acids are removed and deaminated.
- The amino group is converted into urea.
- The residue can then enter the pathways of cellular respiration and be oxidized for energy.
- Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.
The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.
Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by
- converting its glycogen stores to glucose (glycogenolysis)
- converting certain amino acids into glucose (gluconeogenesis).
There are three types of muscle tissue, all of which share some common properties:
- Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
- contractility - the response of muscle tissue to stimulation is contraction, or shortening.
- elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
- stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.
The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.
Skeletal muscle
It is found attached to the bones for movement.
cells are long multi-nucleated cylinders.
The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.
All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.
Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.
That means you have willful control over your skeletal muscles.
Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.
Cardiac muscle
This muscle found in the heart.
It is composed of much shorter cells than skeletal muscle which branch to connect to one another.
These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.
This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.
But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.
Visceral muscle is found in the body's internal organs and blood vessels.
It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.
It is found as distinct bands in the walls of blood vessels and as sphincter muscles.
Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well
The endocrine system along with the nervous system functions in the regulation of body activities. The nervous system acts through electrical impulses and neurotransmitters to cause muscle contraction and glandular secretion and interpretation of impulses. The endocrine system acts through chemical messengers called hormones that influence growth, development, and metabolic activities