NEET MDS Lessons
Physiology
Exchange of gases:
- External respiration:
- exchange of O2 & CO2 between external environment & the cells of the body
- efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
- Internal respiration - intracellular use of O2 to make ATP
- occurs by simple diffusion along partial pressure gradients
DNA (Deoxyribonucleic acid) - controls cell function via transcription and translation (in other words, by controlling protein synthesis in a cell)
Transcription - DNA is used to produce mRNA
Translation - mRNA then moves from the nucleus into the cytoplasm & is used to produce a protein . requires mRNA, tRNA (transfer RNA), amino acids, & a ribosome
tRNA molecule
- sequence of amino acids in a protein is determined by sequence of codons (mRNA). Codons are 'read' by anticodons of tRNAs & tRNAs then 'deliver' their amino acid.
- Amino acids are linked together by peptide bonds (see diagram to the right)
- As mRNA slides through ribosome, codons are exposed in sequence & appropriate amino acids are delivered by tRNAs. The protein (or polypeptide) thus grows in length as more amino acids are delivered.
- The polypeptide chain then 'folds' in various ways to form a complex three-dimensional protein molecule that will serve either as a structural protein or an enzyme.
Respiration occurs in three steps :
1- Mechanical ventilation : inhaling and exhaling of air between lungs and atmosphere.
2- Gas exchange : between pulmonary alveoli and pulmonary capillaries.
3- Transport of gases from the lung to the peripheral tissues , and from the peripheral tissues back to blood .
These steps are well regulated by neural and chemical regulation.
Respiratory tract is subdivided into upper and lower respiratory tract. The upper respiratory tract involves , nose , oropharynx and nasopharynx , while the lower respiratory tract involves larynx , trachea , bronchi ,and lungs .
Nose fulfills three important functions which are :
1. warming of inhaled air .
b. filtration of air .
c. humidification of air .
Pharynx is a muscular tube , which forms a passageway for air and food .During swallowing the epiglottis closes the larynx and the bolus of food falls in the esophagus .
Larynx is a respiratory organ that connects pharynx with trachea . It is composed of many cartilages and muscles and
vocal cords . Its role in respiration is limited to being a conductive passageway for air .
Trachea is a tube composed of C shaped cartilage rings from anterior side, and of muscle (trachealis muscle ) from its posterior side.The rings prevent trachea from collapsing during the inspiration.
From the trachea the bronchi are branched into right and left bronchus ( primary bronchi) , which enter the lung .Then they repeatedly branch into secondary and tertiary bronchi and then into terminal and respiratory broncholes.There are about 23 branching levels from the right and left bronchi to the respiratory bronchioles , the first upper 17 branching are considered as a part of the conductive zones , while the lower 6 are considered to be respiratory zone.
The cartilaginous component decreases gradually from the trachea to the bronchioles . Bronchioles are totally composed of smooth muscles ( no cartilage) . With each branching the diameter of bronchi get smaller , the smallest diameter of respiratory passageways is that of respiratory bronchiole.
Lungs are evolved by pleura . Pleura is composed of two layers : visceral and parietal .
Between the two layers of pleura , there is a pleural cavity , filled with a fluid that decrease the friction between the visceral and parietal pleura.
Respiratory muscles : There are two group of respiratory muscles:
1. Inspiratory muscles : diaphragm and external intercostal muscle ( contract during quiet breathing ) , and accessory inspiratory muscles : scaleni , sternocleidomastoid , internal pectoral muscle , and others( contract during forceful inspiration).
2. Expiratory muscles : internal intercostal muscles , and abdominal muscles ( contract during forceful expiration)
Bronchitis = Irreversible Bronchioconstriction
. Causes - Infection, Air polution, cigarette smoke
a. Primary Defect = Enlargement & Over Activity of Mucous Glands, Secretions very viscous
b. Hypertrophy & hyperplasia, Narrows & Blocks bronchi, Lumen of airway, significantly narrow
c. Impaired Clearance by mucocillary elevator
d. Microorganism retension in lower airways,Prone to Infectious Bronchitis, Pneumonia
e. Permanent Inflamatory Changes IN epithelium, Narrows walls, Symptoms, Excessive sputum, coughing
f. CAN CAUSE EMPHYSEMA
A small fraction of cardiac muscle fibers have myogenicity and autorhythmicity.
Myogenicity is the property of spontaneous impulse generation. The slow sodium channels are leaky and cause the polarity to spontaneously rise to threshold for action potential generation. The fastest of these cells, those in the SA node, set the pace for the heartbeat.
Autorhythmicity - the natural rhythm of spontaneous depolarization. Those with the fastest autorhythmicity act as the 1. heart's pacemaker.
Contractility - like skeletal muscle, most cardiac muscle cells respond to stimuli by contracting. The autorhythmic cells have very little contractility however. Contractility in the other cells can be varied by the effect of neurotransmitters.
Inotropic effects - factors which affect the force or energy of muscular contractions. Digoxin, epinephrine, norepinephrine, and dopamine have positive inotropic effects. Betal blockers and calcium channel blockers have negative inotropic effects
Sequence of events in cardiac conduction: The electrical events in the cardiac cycle.
1) SA node depolarizes and the impulse spreads across the atrial myocardium and through the internodal fibers to the AV node. The atrial myocardium depolarizes resulting in atrial contraction, a physical event.
2) AV node picks up the impulse and transfers it to the AV Bundle (Bundle of His). This produces the major portion of the delay seen in the cardiac cycle. It takes approximately .03 sec from SA node depolarization to the impulse reaching the AV node, and .13 seconds for the impulse to get through the AV node and reach the Bundle of His. Also during this period the atria repolarize.
3) From the AV node the impulse travels through the bundle branches and through the Purkinje fibers to the ventricular myocardium, causing ventricular depolarization and ventricular contraction, a physical event.
4) Ventricular repolarization occurs.
Cells, cytoplasm, and organelles:
- Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles
- Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed)
- Organelles include:
- Endoplasmic reticulum : 2 forms: smooth and rough; the surface of rough ER is coated with ribosomes; the surface of smooth ER is not , Functions include: mechanical support, synthesis (especially proteins by rough ER), and transport
- Golgi complex consists of a series of flattened sacs (or cisternae) functions include: synthesis (of substances likes phospholipids), packaging of materials for transport (in vesicles), and production of lysosomes
- Lysosome : membrane-enclosed spheres that contain powerful digestive enzymes , functions include destruction of damaged cells & digestion of phagocytosed materials
- Mitochondria : have double-membrane: outer membrane & highly convoluted inner membrane
- inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production
- primary function is production of adenosine triphosphate (ATP)
- Ribosome-:composed of rRNA (ribosomal RNA) & protein , primary function is to produce proteins
- Centrioles :paired cylindrical structures located near the nucleas , play an important role in cell division
- Flagella & cilia - hair-like projections from some human cells
- cilia are relatively short & numerous (e.g., those lining trachea)
- a flagellum is relatively long and there's typically just one (e.g., sperm)
-
- Villi Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine)
Plasma: is the straw-colored liquid in which the blood cells are suspended.
|
Composition of blood plasma |
|
|
Component |
Percent |
|
Water |
~92 |
|
Proteins |
6–8 |
|
Salts |
0.8 |
|
Lipids |
0.6 |
|
Glucose (blood sugar) |
0.1 |
Plasma transports materials needed by cells and materials that must be removed from cells:
- various ions (Na+, Ca2+, HCO3−, etc.
- glucose and traces of other sugars
- amino acids
- other organic acids
- cholesterol and other lipids
- hormones
- urea and other wastes
Most of these materials are in transit from a place where they are added to the blood
- exchange organs like the intestine
- depots of materials like the liver
to places where they will be removed from the blood.
- every cell
- exchange organs like the kidney, and skin.