Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Biological Functions are Extremely Sensitive to pH

  • H+ and OH- ions get special attention because they are very reactive
  • Substance which donates H+ ions to solution = acid
  • Substance which donates OH- ions to solution = base
  • Because we deal with H ions over a very wide range of concentration, physiologists have devised a logarithmic unit, pH, to deal with it
    • pH = - log [H+]
    • [H+] is the H ion concentration in moles/liter
    • Because of the way it is defined a high pH indicates low H ion and a low pH indicates high H ion- it takes a while to get used to the strange definition
    • Also because of the way it is defined, a change of 1 pH unit means a 10X change in the concentration of H ions
      • If pH changes by 2 units the H+ concentration changes by 10 X 10 = 100 times
  • Human blood pH is 7.4
    • Blood pH above 7.4 = alkalosis
    • Blood pH below 7.4 = acidosis
  • Body must get rid of ~15 moles of potential acid/day (mostly CO2)
    • CO2 reacts with water to form carbonic acid (H2CO3)
    • Done mostly by lungs & kidney
  • In neutralization H+ and OH- react to form water
  • If the pH changes charges on molecules also change, especially charges on proteins
    • This changes the reactivity of proteins such as enzymes
  • Large pH changes occur as food passes through the intestines.

The defecation reflex:

As a result of the mass movements, pressure is exerted on the rectum and on the internal anal sphincter, which is smooth muscle, resulting in its involuntary relaxation. Afferent impulses are sent to the brain indicating the need to defecate. The external sphincter is voluntary muscle and is controlled by the voluntary nervous system. This sphincter is relaxed along with contraction of the rectal and abdominal muscles in the defecation reflex

Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .

To understand the pathophysiology  of the heart failure ,  lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume

Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload    (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .

Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .

Contractility : Reducing the power of contraction such as in  myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .

Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.

Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility  . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff  .

The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .
 

Cardiac Output:

Minute Volume = Heart Rate X Stroke Volume

Heart rate, HR at rest = 65 to 85 bpm  

Each heartbeat at rest takes about .8 sec. of which .4 sec. is quiescent period.

Stroke volume, SV at rest = 60 to 70 ml.

Heart can increase both rate and volume with exercise. Rate increase is limited due to necessity of minimum ventricular diastolic period for filling. Upper limit is usually put at about 220 bpm. Maximum heart rate calculations are usually below 200. Target heart rates for anaerobic threshold are about 85 to 95% of maximum.

Terms:

End Diastolic Volume, EDV - the maximum volume of the ventricles achieved at the end of ventricular diastole. This is the amount of blood the heart has available to pump. If this volume increases the cardiac output increases in a healthy heart.

End Systolic Volume, ESV - the minimum volume remaining in the ventricle after its systole. If this volume increases it means less blood has been pumped and the cardiac output is less.

EDV - ESV = SV

SV / EDV = Ejection Fraction The ejection fraction is normally around 50% at rest and will increase during strenuous exercise in a healthy heart. Well trained athletes may have ejection fractions approaching 70% in the most strenuous exercise.

Isovolumetric Contraction Phase - a brief period at the beginning of ventricular systole when all valves are closed and ventricular volume remains constant. Pressure has risen enough in the ventricle to close the AV valves but not enough to open the semilunar valves and cause ejection of blood. 

Isovolumetric Relaxation Phase - a brief period at the beginning of ventricular diastole when all valves are closed and ventricular volume is constant. Pressure in the ventricle has lowered producing closure of the semilunar valves but not opening the AV valves to begin pulling blood into the ventricle.

Dicrotic Notch - the small increase in pressure of the aorta or other artery seen when recording a pulse wave. This occurs as blood is briefly pulled back toward the ventricle at the beginning of diastole thus closing the semilunar valves.

Preload - This is the pressure at the end of ventricular diastole, at the beginning of ventricular systole. It is proportional to the End Diastolic Volume (EDV), i.e. as the EDV increases so does the preload of the heart. Factors which increase the preload are: increased total blood volume, increased venous tone and venous return, increased atrial contraction, and the skeletal muscular pump.

Afterload - This is the impedence against which the left ventricle must eject blood, and it is roughly proportional to the End Systolic Volume (ESV). When the peripheral resistance increases so does the ESV and the afterload of the heart. 

The importance of these parameters are as a measure of efficiency of the heart, which increases as the difference between preload and afterload increases

The hypothalamus is a region of the brain. It secretes a number of hormones.

  • Thyrotropin-releasing hormone (TRH)
  • Gonadotropin-releasing hormone (GnRH)
  • Growth hormone-releasing hormone (GHRH)
  • Corticotropin-releasing hormone (CRH)
  • Somatostatin
  • Dopamine

All of these are released into the blood, travel immediately to the anterior lobe of the pituitary, where they exert their effects.

Two other hypothalamic hormones:

  • Antidiuretic hormone (ADH) and
  • Oxytocin

travel in neurons to the posterior lobe of the pituitary where they are released into the circulation.

HEART DISORDERS

  1. Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
    1. Renin release (Juxtaglomerular cells) Kidney
    2. Converts Angiotensinogen => Angiotensin I
    3. In lungs Angiotensin I Converted => Angiotensin II
    4. Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
      1. stimulates thirst
      2. stimulates adrenal cortex to release Aldosterone
        (Sodium retention, potassium loss)
      3. stimulates kidney directly to reabsorb Sodium
      4. releases ADH from Posterior Pituitary
  2. Myocardial Infarction

     

    1. Myocardial Cells die from lack of Oxygen
    2. Adjacent vessels (collateral) dilate to compensate
    3. Intracellular Enzymes leak from dying cells (Necrosis)
      1. Creatine Kinase CK (Creatine Phosphokinase) 3 forms
        1. One isoenzyme = exclusively Heart (MB)
        2. CK-MB blood levels found 2-5 hrs, peak in 24 hrs
        3. Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
      2. Serum glutamic oxaloacetic transaminase (SGOT)
        1. Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
        2. SGOT returns to normal after 3-4 days
    4. Myocardium weakens = Decreased CO & SV (severe - death)
    5. Infarct heal by fibrous repair
    6. Hypertrophy of undamaged myocardial cells
      1. Increased contractility to restore normal CO
      2. Improved by exercise program
    7. Prognosis
      1. 10% uncomplicated recovery
      2. 20% Suddenly fatal
      3. Rest MI not fatal immediately, 15% will die from related causes
  3. Congenital heart disease (Affect oxygenation of blood)
    1. Septal defects
    2. Ductus arteriosus
    3. Valvular heart disease
      1. Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
      2. Regurgitation = cusps, retracted, Do not close, blood moves backwards

Transport of Carbon Dioxide

A.    Dissolved in Blood Plasma (7-10%)

B.    Bound to Hemoglobin (20-30%)

1.    carbaminohemoglobin - Carb Dioxide binds to an amino acid on the polypeptide chains

2.    Haldane Effect - the less oxygenated blood is, the more Carb Diox it can carry

a.    tissues - as Oxygen is unloaded, affinity for Carb Dioxide increases
b.    lungs - as Oxygen is loaded, affinity for Carb Dioxide decreases, allowing it to be released

C.    Bicarbonate Ion Form in Plasma (60-70%)

1.    Carbon Dioxide combines with water to form Bicarbonate

CO2 + H2O <==> H2CO3 <==> H+ + HCO3-

2.    carbonic anhydrase - enzyme in RBCs that catalyzes this reaction in both directions

a.    tissues - catalyzes formation of Bicarbonate
b.    lungs - catalyzes formation of Carb Dioxide

3.    Bohr Effect - formation of Bicarbonate (through Carbonic Acid) leads to LOWER pH (H+ increase), and more unloading of Oxygen to tissues

a.    since hemoglobin "buffers" to H+, the actual pH of blood does not change much

4.    Chloride Shift - chloride ions move in opposite direction of the entering/leaving Bicarbonate, to prevent osmotic problems with RBCs

D.    Carbon Dioxide Effects on Blood pH

1.    carbonic acid-bicarbonate buffer system
    
low pH       → HCO3- binds to H+
high pH     →   H2CO3 releases H+
    
2.     low shallow breaths    → HIGH Carb Dioxide    → LOW pH (higher H+)
3.     rapid deep breaths     → LOW Carb Dioxide   → HIGH pH (lower H+)

Explore by Exams