Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Bleeding Disorders

A deficiency of a clotting factor can lead to uncontrolled bleeding.

The deficiency may arise because

  • not enough of the factor is produced or
  • a mutant version of the factor fails to perform properly.

Examples:

  • von Willebrand disease (the most common)
  • hemophilia A for factor 8 deficiency
  • hemophilia B for factor 9 deficiency.
  • hemophilia C for factor 11 deficiency

In some cases of von Willebrand disease, either a deficient level or a mutant version of the factor eliminates its protective effect on factor 8. The resulting low level of factor 8 mimics hemophilia A.

Neural Substrates of Breathing

A.    Medulla Respiratory Centers

Inspiratory Center (Dorsal Resp Group - rhythmic breathing) → phrenic nerve→ intercostal nerves→ diaphragm + external intercostals

Expiratory Center (Ventral Resp Group - forced expiration) → phrenic nerve → intercostal nerves → internal intercostals + abdominals (expiration)

1.    eupnea - normal resting breath rate (12/minute)
2.    drug overdose - causes suppression of Inspiratory Center

B.    Pons Respiratory Centers

1.    pneumotaxic center - slightly inhibits medulla, causes shorter, shallower, quicker breaths
2.    apneustic center - stimulates the medulla, causes longer, deeper, slower breaths

C.    Control of Breathing Rate & Depth

1.    breathing rate - stimulation/inhibition of medulla
2.    breathing depth - activation of inspiration muscles
3.    Hering-Breuer Reflex - stretch of visceral pleura that lungs have expanded (vagal nerve)

D.    Hypothalamic Control - emotion + pain to the medulla

E.    Cortex Controls (Voluntary Breathing) - can override medulla as during singing and talking

Micturition (urination) is a process, by which the final urine is eliminated out of the body .
After being drained into the ureters, urine is stored in urinary bladder until being eliminated.

Bladder is a hollow muscular organ, which has three layers:

- epithelium : Composed of superficial layer of flat cells and deep layer of cuboidal cells.

- muscular layer : contain smooth muscle fibers, that are arranged in longitudinal, spiral and circular pattern . Detrusor  muscle is the main muscle of bladder. The thickening of detrusor muscle forms internal urinary sphinctor which is not an actual urinary sphincter. The actual one is the external urinary sphincter, which is composed of striated muscle and is a part of urogenital diaphragm.

- adventitia: composed of connective tissue fibers.

So: There are two phases of bladder function that depend on characterestics of its muscular wall and innervation :

1. Bladder filling : Urine is poured into bladder through the orifices of ureters. Bladder has five peristaltic contraction per minute . These contraction facilitate moving of urine from the ureter to the bladder as prevent reflux of urine into the ureter.. The capacity of bladder is about  400  ml. But when the bladder start filling its wall extends and thus the pressure is not increased with the increased urine volume.

2. Bladder emptying : When bladder is full stretch receptors in bladder wall are excited , and send signals via the sensory branches of pelvic nerves to the sacral plexus. The first urge to void is felt at a bladder volume of about 150 ml. In sacral portion of spinal cord the sensory signals are integrated and then a motor signal is sent to the urinarry blader muscles through the efferent branches of pelvic nerve itself.

In adult people the neurons in sacral portion could be influenced by nerve signals coming from brain ( Micturition center in pons ) that are also influenced by signals coming from cerebral cortex.

So: The sensory signals ,transmitted to the sacral region will also stimulate ascending pathway and the signals be also transmitted to the micturition center in the brain stem and then to the cerebrum to cause conscious desire for urination.

If micturition is not convenient the brain sends signals to inhibit the parasympathetic motor neuron to the bladder via the sacral neurons. 

It also send inhibitory signal via the somatomotor pudendal nerve to keep external urinary sphincter contracting.

When micturition is convenient a brain signal via the sacral neurons stimulate the parasympathetic pelvic nerve to cause contraction of detruser muscle via M-cholinergic receptors and causes relaxation of external urinary sphincter and the micturition occurs.

Sympathetic hypogastric nerve does not contribute that much to the micturition reflex. It plays role in prvrntion reflux of semen into urinary bladder during ejaculation by contracting bladder muscles.

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

1.Rhythmicity ( Chronotropism ) :  means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization )  . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.

There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
-  transplanted heart continues to beat regularly without any nerve supply.
-  Embryologically the heart starts to beat before reaching any nerves to them.
-  Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.

Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.

Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system  is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.

These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.

The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) . 

The threshold is also less negative than that of nerve cells ( -40 millivolts ).

The decreased permeability to potassium from its side decrease the eflux  of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape

Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.

Factors , affecting the rhythmicity of the cardiac muscle :


I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia


II. Factors that decrease rhythmicity ( negative chronotropic):


1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.

The Cardiac Cycle: the sequence of events in one heartbeat.

systole - the contraction phase; unless otherwise specified refers to left ventricle, but each chamber has its own systole.

diastole - the relaxation phase; unless otherwise specified refers to left ventricle, but each chamber has its own diastole.

1) quiescent period - period when all chambers are at rest and filling. 70% of ventricular filling occurs during this period. The AV valves are open, the semilunar valves are closed.

2) atrial systole - pushes the last 30% of blood into the ventricle.

3) atrial diastole - atria begin filling.

4) ventricular systole - First the AV valves close causing the first heart sound, then after the isovolumetric contraction phase the semilunar valves open permitting ventricular ejection of blood into the arteries.

5) ventricular diastole - As the ventricles relax the semilunar valves close first producing the second heart sound, then after the isovolumetric relaxation phase the AV valves open allowing ventricular filling.

Production of Hormones

The kidneys produce and interact with several hormones that are involved in the control of systems outside of the urinary system.

Calcitriol. Calcitriol is the active form of vitamin D in the human body. It is produced by the kidneys from precursor molecules produced by UV radiation striking the skin. Calcitriol works together with parathyroid hormone (PTH) to raise the level of calcium ions in the bloodstream. When the level of calcium ions in the blood drops below a threshold level, the parathyroid glands release PTH, which in turn stimulates the kidneys to release calcitriol. Calcitriol promotes the small intestine to absorb calcium from food and deposit it into the bloodstream. It also stimulates the osteoclasts of the skeletal system to break down bone matrix to release calcium ions into the blood.
 
Erythropoietin. Erythropoietin, also known as EPO, is a hormone that is produced by the kidneys to stimulate the production of red blood cells. The kidneys monitor the condition of the blood that passes through their capillaries, including the oxygen-carrying capacity of the blood. When the blood becomes hypoxic, meaning that it is carrying deficient levels of oxygen, cells lining the capillaries begin producing EPO and release it into the bloodstream. EPO travels through the blood to the red bone marrow, where it stimulates hematopoietic cells to increase their rate of red blood cell production. Red blood cells contain hemoglobin, which greatly increases the blood’s oxygen-carrying capacity and effectively ends the hypoxic conditions.
 
Renin. Renin is not a hormone itself, but an enzyme that the kidneys produce to start the renin-angiotensin system (RAS). The RAS increases blood volume and blood pressure in response to low blood pressure, blood loss, or dehydration. Renin is released into the blood where it catalyzes angiotensinogen from the liver into angiotensin I. Angiotensin I is further catalyzed by another enzyme into Angiotensin II.

Angiotensin II stimulates several processes, including stimulating the adrenal cortex to produce the hormone aldosterone. Aldosterone then changes the function of the kidneys to increase the reabsorption of water and sodium ions into the blood, increasing blood volume and raising blood pressure. Negative feedback from increased blood pressure finally turns off the RAS to maintain healthy blood pressure levels.

Explore by Exams