NEET MDS Lessons
Physiology
A small fraction of cardiac muscle fibers have myogenicity and autorhythmicity.
Myogenicity is the property of spontaneous impulse generation. The slow sodium channels are leaky and cause the polarity to spontaneously rise to threshold for action potential generation. The fastest of these cells, those in the SA node, set the pace for the heartbeat.
Autorhythmicity - the natural rhythm of spontaneous depolarization. Those with the fastest autorhythmicity act as the 1. heart's pacemaker.
Contractility - like skeletal muscle, most cardiac muscle cells respond to stimuli by contracting. The autorhythmic cells have very little contractility however. Contractility in the other cells can be varied by the effect of neurotransmitters.
Inotropic effects - factors which affect the force or energy of muscular contractions. Digoxin, epinephrine, norepinephrine, and dopamine have positive inotropic effects. Betal blockers and calcium channel blockers have negative inotropic effects
Sequence of events in cardiac conduction: The electrical events in the cardiac cycle.
1) SA node depolarizes and the impulse spreads across the atrial myocardium and through the internodal fibers to the AV node. The atrial myocardium depolarizes resulting in atrial contraction, a physical event.
2) AV node picks up the impulse and transfers it to the AV Bundle (Bundle of His). This produces the major portion of the delay seen in the cardiac cycle. It takes approximately .03 sec from SA node depolarization to the impulse reaching the AV node, and .13 seconds for the impulse to get through the AV node and reach the Bundle of His. Also during this period the atria repolarize.
3) From the AV node the impulse travels through the bundle branches and through the Purkinje fibers to the ventricular myocardium, causing ventricular depolarization and ventricular contraction, a physical event.
4) Ventricular repolarization occurs.
Reflexes
A reflex is a direct connection between stimulus and response, which does not require conscious thought. There are voluntary and involuntary reflexes.
The Stretch Reflex:
The stretch reflex in its simplest form involves only 2 neurons, and is therefore sometimes called a 2-neuron reflex. The two neurons are a sensory and a motor neuron. The sensory neuron is stimulated by stretch (extension) of a muscle. Stretch of a muscle normally happens when its antagonist contracts, or artificially when its tendon is stretched, as in the knee jerk reflex. Muscles contain receptors called muscle spindles. These receptors respond to the muscles's stretch. They send stimuli back to the spinal cord through a sensory neuron which connects directly to a motor neuron serving the same muscle. This causes the muscle to contract, reversing the stretch. The stretch reflex is important in helping to coordinate normal movements in which antagonistic muscles are contracted and relaxed in sequence, and in keeping the muscle from overstretching.
Since at the time of the muscle stretch its antagonist was contracting, in order to avoid damage it must be inhibited or tuned off in the reflex. So an additional connection through an interneuron sends an inhibitory pathway to the antagonist of the stretched muscle - this is called reciprocal inhibition.
The Deep Tendon Reflex:
Tendon receptors respond to the contraction of a muscle. Their function, like that of stretch reflexes, is the coordination of muscles and body movements. The deep tendon reflex involves sensory neurons, interneurons, and motor neurons. The response reverses the original stimulus therefore causing relaxation of the muscle stimulated. In order to facilitate that the reflex sends excitatory stimuli to the antagonists causing them to contract - reciprocal activation.
The stretch and tendon reflexes complement one another. When one muscle is stretching and stimulating the stretch reflex, its antagonist is contracting and stimulating the tendon reflex. The two reflexes cause the same responses thus enhancing one another.
The Crossed Extensor Reflex -
The crossed extensor reflex is just a withdrawal reflex on one side with the addition of inhibitory pathways needed to maintain balance and coordination. For example, you step on a nail with your right foot as you are walking along. This will initiate a withdrawal of your right leg. Since your quadriceps muscles, the extensors, were contracting to place your foot forward, they will now be inhibited and the flexors, the hamstrings will now be excited on your right leg. But in order to maintain your balance and not fall down your left leg, which was flexing, will now be extended to plant your left foot (e.g. crossed extensor). So on the left leg the flexor muscles which were contracting will be inhibited, and the extensor muscles will be excited
Events in Muscle Contraction - the sequence of events in crossbridge formation:
1) In response to Ca2+ release into the sarcoplasm, the troponin-tropomyosin complex removes its block from actin, and the myosin heads immediately bind to active sites.
2) The myosin heads then swivel, the Working Stroke, pulling the Z-lines closer together and shortening the sarcomeres. As this occurs the products of ATP hydrolysis, ADP and Pi, are released.
3) ATP is taken up by the myosin heads as the crossbridges detach. If ATP is unavailable at this point the crossbridges cannot detach and release. Such a condition occurs in rigor mortis, the tensing seen in muscles after death, and in extreme forms of contracture in which muscle metabolism can no longer provide ATP.
4) ATP is hydrolyzed and the energy transferred to the myosin heads as they cock and reset for the next stimulus.
Excitation-Contraction Coupling: the Neuromuscular Junction
Each muscle cell is stimulated by a motor neuron axon. The point where the axon terminus contacts the sarcolemma is at a synapse called the neuromuscular junction. The terminus of the axon at the sarcolemma is called the motor end plate. The sarcolemma is polarized, in part due to the unequal distribution of ions due to the Sodium/Potassium Pump.
1) Impulse arrives at the motor end plate (axon terminus) causing Ca2+ to enter the axon.
2) Ca2+ binds to ACh vesicles causing them to release the ACh (acetylcholine) into the synapse by exocytosis.
3) ACH diffuses across the synapse to bind to receptors on the sarcolemma. Binding of ACH to the receptors opens chemically-gated ion channels causing Na+ to enter the cell producing depolarization.
4) When threshold depolarization occurs, a new impulse (action potential) is produced that will move along the sarcolemma. (This occurs because voltage-gated ion channels open as a result of the depolarization -
5) The sarcolemma repolarizes:
a) K+ leaves cell (potassium channels open as sodium channels close) returning positive ions to the outside of the sarcolemma. (More K+ actually leaves than necessary and the membrane is hyperpolarized briefly. This causes the relative refractory period) (b) Na+/K+ pump eventually restores resting ion distribution. The Na+/K+ pump is very slow compared to the movement of ions through the ion gates. But a muscle can be stimulated thousands of times before the ion distribution is substantially affected.
6) ACH broken down by ACH-E (a.k.a. ACHase, cholinesterase). This permits the receptors to respond to another stimulus.
Excitation-Contraction Coupling:
1) The impulse (action potential) travels along the sarcolemma. At each point the voltaged-gated Na+ channels open to cause depolarization, and then the K+ channels open to produce repolarization.
2) The impulse enters the cell through the T-tublules, located at each Z-disk, and reach the sarcoplasmic reticulum (SR), stimulating it.
3) The SR releases Ca2+ into the sarcoplasm, triggering the muscle contraction as previously discussed.
4) Ca2+ is pumped out of the sarcoplasm by the SR and another stimulus will be required to continue the muscle contraction.
Conductivity :
Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another) by the excitatory -conductive system of the heart.
Excitatory conductive system of the heart involves:
1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.
2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.
There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s) .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s
3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .
4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.
Factors , affecting conductivity ( dromotropism) :
I. Positive dromotropic factors :
1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis
II. Negative dromotropic factors :
1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.
Cell, or Plasma, membrane
- Structure - 2 primary building blocks include
protein (about 60% of the membrane) and lipid, or
fat (about 40% of the membrane).
The primary lipid is called phospholipids, and molecules of phospholipid form a 'phospholipid bilayer' (two layers of phospholipid molecules). This bilayer forms because the two 'ends' of phospholipid molecules have very different characteristics: one end is polar (or hydrophilic) and one (the hydrocarbon tails below) is non-polar (or hydrophobic):
- Functions include:
- supporting and retaining the cytoplasm
- being a selective barrier .
- transport
- communication (via receptors)
1. Automatic control (sensory) of respiration is in - brainstem (midbrain)
2. Behavioral/voluntary control is in - the cortex
3. Alveolar ventilation -the amount of atmospheric air that actually reaches the alveolar per breath and that can participate in the exchange of gasses between alveoli and blood
4. Only way to increase gas exchange in alveolar capillaries - perfusion-limited gas exchange
5. Pulmonary ventiliation not effected by - concentration of bicarbonate ions
6. Central chemoreceptors - medulla - CO2, O2 and H+ concentrations
7. Peripheral chemoreceptors - carotid and aortic bodies- PO2, PCO2 and pH
8. Major stimulus for respiratory centers - arterial PCO2
9. Rhythmic breathing depends on
1. continuous (tonic) inspiratory drive from DRG (dorsal respiratory group)
2. intermittent (phasic) expiratory input from cerebrum, thalamus, cranial nerves and ascending spinal cord sensory tracts
10. Primary site for gas exchange - type I epithelial cells for alveoli
PHYSIOLOGY OF THE BRAIN
- The Cerebrum (Telencephalon) Lobes of the cerebral cortex
- Frontal Lobe
- Precentral gyrus, Primary Motor Cortex, point to point motor neurons, pyramidal cells: control motor neurons of the brain and spinal cord. See Motor homunculus
- Secondary Motor Cortex repetitive patterns
- Broca's Motor Speech area
- Anterior - abstract thought, planning, decision making, Personality
- Parietal Lobe
- Post central gyrus, Sensory cortex, See Sensory homunculus, size proportional to sensory receptor density.
- Sensory Association area, memory of sensations
- Occipital Lobe
- Visual cortex, sight (conscious perception of vision)
- Visual Association area, correlates visual images with previous images, (memory of vision, )
- Temporal Lobe
- Auditory Cortex, sound
- Auditory Association area, memory of sounds
- Common Integratory Center - angular gyrus, Parietal, Temporal & Occipital lobes
- One side becomes dominent, integrats sensory (somesthetic, auditory, visual) information
- The Basal nuclei (ganglia)
- Grey matter (cell bodies) within the White matter of cerebrum, control voluntary movements
- Cauadate nucles - chorea (rapi, uncontrolled movements), Parkinsons: (dopamine neurons of substantia nigra to caudate nucles) jerky movements, spasticity, tremor, blank facial expression
- The limbic system - ring around the brain stem, emotions(w/hypothalamus), processing of olfactory information
- Frontal Lobe
- The Diencephalon
- The Thalamus - Sensory relay center to cortex (primitive brain!)
- The Hypothalamus
- core temperature control"thermostat", shivering and nonshivering thermogenesis
- hunger & satiety centers, wakefulness, sleep, sexual arousal,
- emotions (w/limbic-anger, fear, pain, pleasure), osmoregulation, (ADH secretion),
- Secretion of ADH, Oxytocin, Releasing Hormones for Anterior pitutary
- Linkage of nervous and endocrine systems
- The Mesencephalon or Midbrain -
- red nucleus, motor coordination (cerebellum/Motor cortex),
- substantia nigra
- The Metencephalon
- The Cerebellum -
- Performs automatic adjustments in complex motor activities
- Input from Proprioceptors (joint, tendon, muscles), position of body in Space
- Motor cortex, intended movements (changes in position of body in Space)
- Damping (breaking motor function), Balance, predicting, inhibitory function of Purkinji cells (GABA), speed, force, direction of movement
- The Pons - Respiratory control centers (apneustic, pneumotaxic)
- Nuclei of cranial nerves V, VI, VII, VIII
- The Cerebellum -
- Myelencephalon
- The Medulla
- Visceral motor centers (vasomotor, cardioinhibtory, respiratory)
- Reticular Formation RAS system, alert cortex to incoming signals, maintenance of consciousness, arousal from sleep
- All Afferent & Efferent fibers pass through, crossing over of motor tracts
- Corpus Callosum: Permits communication between cerebralhemispheres
- The Medulla
- Generalized Brain Avtivity
- Brain Activity and the Electroencephalogram(EEG)
- alpha waves: resting adults whose eyes are closed
- beta waves: adults concentrating on a specific task;
- theta waves: adults under stress;
- delta waves: during deep sleep and in clinical disorders
- Brain Seizures
- Grand Mal: generalized seizures, involvs gross motor activity, affects the individual for a matter or hours
- Petit mal: brief incidents, affect consciousness but may have no obvious motor abnormalities
- Chemical Effects on the Brain
- Sedatives: reduce CNS activity
- Analgesics: relieve pain by affecting pain pathways or peripheral sensations
- Psychotropics: alter mood and emotional states
- Anticonvulsants: control seizures
- Stimulants: facilitate CNS activity
- Memory and learning
- Short-term, or primary, memories last a short time, immediately accessible (phone number)
- Secondary memories fade with time (your address at age 5)
- Tertiary memories last a lifetime (your name)
- Memories are stored within specific regions of the cerebral cortex.
- Learning, a more complex process involving the integration of memories and their use to direct or modify behaviors
- Neural basis for memory and learning has yet to be determined.
- Brain Activity and the Electroencephalogram(EEG)
- Fibers in CNS
- Association fibers: link portions of the cerebrum;
- Commissural fibers: link the two hemispheres;
- Projection fibers: link the cerebrum to the brain stem