NEET MDS Lessons
Physiology
(RDS) Respiratory distress of Newborn
1. hyaline membrane disease of the new born
2. decrease in surfactant, Weak, Abnormal complience of chest wall
3. Small alveoli, difficult to inflate, Alveoli tent to collapse, many of varied sizes
4. decrease in O2 diffusion area, lung difficult to expand, in compliance
The cell membrane is called the sarcolemma. This membrane is structured to receive and conduct stimuli. The sarcoplasm of the cell is filled with contractile myofibrils and this results in the nuclei and other organelles being relegated to the edge of the cell.
Myofibrils are contractile units within the cell which consist of a regular array of protein myofilaments. Each myofilament runs longitudinally with respect to the muscle fiber. There are two types: the thick bands and the thin bands. Thick bands are made of multiple molecules of a protein called myosin. The thin bands are made of multiple molecules of a protein called actin. The thin actin bands are attached to a Z-line or Z-disk of an elastic protein called titin. The titin protein also extends into the myofibril anchoring the other bands in position. From each Z-line to the next is a unit called the
The sarcomere is the smallest contractile unit in the myofibril. Sarcomeres contract because the Z-lines move closer together. As the sarcomeres contract the myofibrils contract. As the myofibrils contract the muscle cell contracts. And as the cells contract the entire muscle contracts.
The arrangement of the thick myosin filaments across the myofibrils and the cell causes them to refract light and produce a dark band known as the A Band. In between the A bands is a light area where there are no thick myofilaments, only thin actin filaments. These are called the I Bands. The dark bands are the striations seen with the light microscope.
Sensory pathways include only those routes which conduct information to the conscious cortex of the brain. However, we will use the term in its more loosely and commonly applied context to include input from all receptors, whether their signals reach the conscious level or not.
Blood Groups
Blood groups are created by molecules present on the surface of red blood cells (and often on other cells as well).
The ABO Blood Groups
The ABO blood groups are the most important in assuring safe blood transfusions.
Blood Group |
Antigens on RBCs |
Antibodies in Serum |
Genotypes |
A |
A |
Anti-B |
AA or AO |
B |
B |
Anti-A |
BB or BO |
AB |
A and B |
Neither |
AB |
O |
Neither |
Anti-A and anti-B |
OO |
When red blood cells carrying one or both antigens are exposed to the corresponding antibodies, they agglutinate; that is, clump together. People usually have antibodies against those red cell antigens that they lack.
The critical principle to be followed is that transfused blood must not contain red cells that the recipient's antibodies can clump. Although theoretically it is possible to transfuse group O blood into any recipient, the antibodies in the donated plasma can damage the recipient's red cells. Thus all transfusions should be done with exactly-matched blood.
The Rh System
Rh antigens are transmembrane proteins with loops exposed at the surface of red blood cells. They appear to be used for the transport of carbon dioxide and/or ammonia across the plasma membrane. They are named for the rhesus monkey in which they were first discovered.
There are a number of Rh antigens. Red cells that are "Rh positive" express the one designated D. About 15% of the population have no RhD antigens and thus are "Rh negative".
The major importance of the Rh system for human health is to avoid the danger of RhD incompatibility between mother and fetus.
During birth, there is often a leakage of the baby's red blood cells into the mother's circulation. If the baby is Rh positive (having inherited the trait from its father) and the mother Rh-negative, these red cells will cause her to develop antibodies against the RhD antigen. The antibodies, usually of the IgG class, do not cause any problems for that child, but can cross the placenta and attack the red cells of a subsequent Rh+ fetus. This destroys the red cells producing anemia and jaundice. The disease, called erythroblastosis fetalis or hemolytic disease of the newborn, may be so severe as to kill the fetus or even the newborn infant. It is an example of an antibody-mediated cytotoxicity disorder.
Although certain other red cell antigens (in addition to Rh) sometimes cause problems for a fetus, an ABO incompatibility does not. Rh incompatibility so dangerous when ABO incompatibility is not
It turns out that most anti-A or anti-B antibodies are of the IgM class and these do not cross the placenta. In fact, an Rh−/type O mother carrying an Rh+/type A, B, or AB fetus is resistant to sensitization to the Rh antigen. Presumably her anti-A and anti-B antibodies destroy any fetal cells that enter her blood before they can elicit anti-Rh antibodies in her.
This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or Rhogam. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.
Rh immune globulin came into common use in the United States in 1968, and within a decade the incidence of Rh hemolytic disease became very low.
The Parathyroid Glands
The parathyroid glands are 4 tiny structures embedded in the rear surface of the thyroid gland. They secrete parathyroid hormone (PTH) a polypeptide of 84 amino acids. PTH increases the concentration of Ca2+ in the blood in three ways. PTH promotes
- release of Ca2+ from the huge reservoir in the bones. (99% of the calcium in the body is incorporated in our bones.)
- reabsorption of Ca2+ from the fluid in the tubules in the kidneys
- absorption of Ca2+ from the contents of the intestine (this action is mediated by calcitriol, the active form of vitamin D.)
PTH also regulates the level of phosphate in the blood. Secretion of PTH reduces the efficiency with which phosphate is reclaimed in the proximal tubules of the kidney causing a drop in the phosphate concentration of the blood.
Hyperparathyroidism
Elevate the level of PTH causing a rise in the level of blood Ca2+ .Calcium may be withdrawn from the bones that they become brittle and break.
Patients with this disorder have high levels of Ca2+ in their blood and excrete small amounts of Ca2+ in their urine. This causes hyperparathyroidism.
Hypoparathyroidism
This disorder have low levels of Ca2+ in their blood and excrete large amounts of Ca2+ in their urine.
Hypoxia
- Hypoxia is tissue oxygen deficiency
- Brain is the most sensitive tissue to hypoxia: complete lack of oxygen can cause unconsciousness in 15 sec and irreversible damage within 2 min.
- Oxygen delivery and use can be interrupted at several sites
Type of |
O2 Uptake |
Hemoglobin |
Circulation |
Tissue O2 Utilization |
Hypoxic |
Low |
Normal |
Normal |
Normal |
Anemic |
Normal |
Low |
Normal |
Normal |
Ischemic |
Normal |
Normal |
Low |
Normal |
Histotoxic |
Normal |
Normal |
Normal |
Low |
- Causes:
- Hypoxic: high altitude, pulmonary edema, hypoventilation, emphysema, collapsed lung
- Anemic: iron deficiency, hemoglobin mutations, carbon monoxide poisoning
- Ischemic: shock, heart failure, embolism
- Histotoxic: cyanide poisoning (inhibits mitochondria)
- Carbon monoxide (CO) poisoning:
- CO binds to the same heme Fe atoms that O2 binds to
- CO displaces oxygen from hemoglobin because it has a 200X greater affinity for hemoglobin.
- Treatment for CO poisoning: move victim to fresh air. Breathing pure O2 can give faster removal of CO
- Cyanide poisoning:
- Cyanide inhibits the cytochrome oxidase enzyme of mitochondria
- Two step treatment for cyanide poisoning:
- 1) Give nitrites
- Nitrites convert some hemoglobin to methemoglobin. Methemoglobin pulls cyanide away from mitochondria.
- 2) Give thiosulfate.
- Thiosulfate converts the cyanide to less poisonous thiocyanate.
- 1) Give nitrites
Oxygen Uptake in the Lungs is Increased About 70X by Hemoglobin in the Red Cells
- In the lungs oxygen must enter the blood
- A small amount of oxygen dissolves directly in the serum, but 98.5% of the oxygen is carried by hemoglobin
- All of the hemoglobin is found within the red blood cells (RBCs or erythrocytes)
- The hemoglobin content of the blood is about 15 gm/deciliter (deciliter = 100 mL)
- Red cell count is about 5 million per microliter
Each Hemoglobin Can Bind Four O2 Molecules (100% Saturation)
- Hemoglobin is a protein molecule with 4 protein sub-units (2 alphas and 2 betas)
- Each of the 4 sub-units contains a heme group which gives the protein a red color
- Each heme has an iron atom in the center which can bind an oxygen molecule (O2)
- The 4 hemes in a hemoglobin can carry a maximum of 4 oxygen molecules
- When hemoglobin is saturated with oxygen it has a bright red color; as it loses oxygen it becomes bluish (cyanosis)
The Normal Blood Hematocrit is Just Below 50%
- Blood consists of cells suspended in serum
- More than 99% of the cells in the blood are red blood cells designed to carry oxygen
- 25% of all the cells in the body are RBCs
- The volume percentage of cells in the blood is called the hematocrit
- Normal hematocrits are about 40% for women and 45% for men
At Sea Level the Partial Pressure of O2 is High Enough to Give Nearly 100% Saturation of Hemoglobin
- As the partial pressure of oxygen in the alveoli increases the hemoglobin in the red cells passing through the lungs rises until the hemoglobin is 100% saturated with oxygen
- At 100% saturation each hemoglobin carries 4 O2 molecules
- This is equal to 1.33 mL O2 per gram of hemoglobin
- A person with 15 gm Hb/deciliter can carry:
- Max O2 carriage = 1.33 mL O2/gm X 15 gm/deciliter = 20 mL O2/deciliter
- A plot of % saturation vs pO2 gives an S-shaped "hemoglobin dissociation curve"
- At 100% saturation each hemoglobin binds 4 oxygen molecules
At High Altitudes Hemoglobin Saturation May be Well Below 100%
- At the alveolar pO2 of 105 mm Hg at sea level the hemoglobin will be about 97% saturated, but the saturation will fall at high altitudes
- At 12,000 feet altitude alveolar pO2 will be about 60 mm Hg and the hemoglobin will be 90% saturated
- At 29,000 feet (Mt. Everest) alveolar pO2 is about 24 mm Hg and the hemoglobin will be only 42% saturated
- At very high altitudes most climbers must breath pure oxygen from tanks
- During acclimatization to high altitude the hematocrit can rise to about 60%- this increases the amount of oxygen that can be carried
- Hematocrits above 60% are not useful because the blood viscosity will increase to the point where it impairs circulation