NEET MDS Lessons
Physiology
COPD and Cancer
A. Chronic Obstructive Pulmonary Disease (COPD)
1. Common features of COPD
a. almost all have smoking history
b. dyspnea - chronic "gasping" for air
c. frequent coughing and infections
d. often leads to respiratory failure
2. obstructive emphysema - usually results from smoking
a. enlargement & deterioration of alveoli
b. loss of elasticity of the lungs
c. "barrel chest" from bronchiole opening during inhalation & constriction during exhalation
3. chronic bronchitis - mucus/inflammation of mucosa
B. Lung Cancer
1. squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2. adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3. small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4. 90% of all lung cancers are in people who smoke or have smoked
The Kidneys
The kidneys are the primary functional organ of the renal system.
They are essential in homeostatic functions such as the regulation of electrolytes, maintenance of acid–base balance, and the regulation of blood pressure (by maintaining salt and water balance).
They serve the body as a natural filter of the blood and remove wastes that are excreted through the urine.
They are also responsible for the reabsorption of water, glucose, and amino acids, and will maintain the balance of these molecules in the body.
In addition, the kidneys produce hormones including calcitriol, erythropoietin, and the enzyme renin, which are involved in renal and hemotological physiological processes.
Anatomical Location
The kidneys are a pair of bean-shaped, brown organs about the size of your fist. They are covered by the renal capsule, which is a tough capsule of fibrous connective tissue.
Right kidney being slightly lower than the left, and left kidney being located slightly more medial than the right.
The right kidneys lie just below the diaphragm and posterior to the liver, the left below the diaphragm and posterior to the spleen.
Resting on top of each kidney is an adrenal gland (adrenal meaning on top of renal), which are involved in some renal system processes despite being a primarily endocrine organ.
They are considered retroperitoneal, which means that they lie behind the peritoneum, the membrane lining of the abdominal cavity.
The renal artery branches off from the lower part of the aorta and provides the blood supply to the kidneys.
Renal veins take blood away from the kidneys into the inferior vena cava.
The ureters are structures that come out of the kidneys, bringing urine downward into the bladder.
Internal Anatomy of the Kidneys
There are three major regions of the kidney:
1. Renal cortex
2. Renal medulla
3. Renal pelvis
The renal cortex is a space between the medulla and the outer capsule.
The renal medulla contains the majority of the length of nephrons, the main functional component of the kidney that filters fluid from blood.
The renal pelvis connects the kidney with the circulatory and nervous systems from the rest of the body.
Renal Cortex
The kidneys are surrounded by a renal cortex
The cortex provides a space for arterioles and venules from the renal artery and vein, as well as the glomerular capillaries, to perfuse the nephrons of the kidney. Erythropotein, a hormone necessary for the synthesis of new red blood cells, is also produced in the renal cortex.
Renal Medulla
The medulla is the inner region of the parenchyma of the kidney. The medulla consists of multiple pyramidal tissue masses, called the renal pyramids, which are triangle structures that contain a dense network of nephrons.
At one end of each nephron, in the cortex of the kidney, is a cup-shaped structure called the Bowman's capsule. It surrounds a tuft of capillaries called the glomerulus that carries blood from the renal arteries into the nephron, where plasma is filtered through the capsule.
After entering the capsule, the filtered fluid flows along the proximal convoluted tubule to the loop of Henle and then to the distal convoluted tubule and the collecting ducts, which flow into the ureter. Each of the different components of the nephrons are selectively permeable to different molecules, and enable the complex regulation of water and ion concentrations in the body.
Renal Pelvis
The renal pelvis contains the hilium. The hilum is the concave part of the bean-shape where blood vessels and nerves enter and exit the kidney; it is also the point of exit for the ureters—the urine-bearing tubes that exit the kidney and empty into the urinary bladder. The renal pelvis connects the kidney to the rest of the body.
Supply of Blood and Nerves to the Kidneys
• The renal arteries branch off of the abdominal aorta and supply the kidneys with blood. The arterial supply of the kidneys varies from person to person, and there may be one or more renal arteries to supply each kidney.
• The renal veins are the veins that drain the kidneys and connect them to the inferior vena cava.
• The kidney and the nervous system communicate via the renal plexus. The sympathetic nervous system will trigger vasoconstriction and reduce renal blood flow, while parasympathetic nervous stimulation will trigger vasodilation and increased blood flow.
• Afferent arterioles branch into the glomerular capillaries, while efferent arterioles take blood away from the glomerular capillaries and into the interlobular capillaries that provide oxygen to the kidney.
• renal vein
The veins that drain the kidney and connect the kidney to the inferior vena cava.
• renal artery
These arise off the side of the abdominal aorta, immediately below the superior mesenteric artery, and supply the kidneys with blood.
Red blood cell cycle:
RBCs enter the blood at a rate of about 2 million cells per second. The stimulus for erythropoiesis is the hormone erythropoietin, secreted mostly by the kidney. RBCs require Vitamin B12, folic acid, and iron. The lifespan of RBC averages 120 days. Aged and damaged red cells are disposed of in the spleen and liver by macrophages. The globin is digested and the amino acids released into the blood for protein manufacture; the heme is toxic and cannot be reused, so it is made into bilirubin and removed from the blood by the liver to be excreted in the bile. The red bile pigment bilirubin oxidizes into the green pigment biliverdin and together they give bile and feces their characteristic color. Iron is picked up by a globulin protein (apotransferrin) to be transported as transferrin and then stored, mostly in the liver, as hemosiderin or ferritin. Ferritin is short term iron storage in constant equilibrium with plasma iron carried by transferrin. Hemosiderin is long term iron storage, forming dense granules visible in liver and other cells which are difficult for the body to mobilize.
Some iron is lost from the blood due to hemorrhage, menstruation, etc. and must be replaced from the diet. On average men need to replace about 1 mg of iron per day, women need 2 mg. Apotransferrin (transferrin without the iron) is present in GI lining cells and is also released in the bile. It picks up iron from the GI tract and stimulates receptors on the lining cells which absorb it by pinocytosis. Once through the mucosal cell iron is carried in blood as transferrin to the liver and marrow. Iron leaves the transferrin molecule to bind to ferritin in these tissues. Most excess iron will not be absorbed due to saturation of ferritin, reduction of apotransferrin, and an inhibitory process in the lining tissue.
Erythropoietin Mechanism:
Myeloid (blood producing) tissue is found in the red bone marrow located in the spongy bone. As a person ages much of this marrow becomes fatty and ceases production. But it retains stem cells and can be called on to regenerate and produce blood cells later in an emergency. RBCs enter the blood at a rate of about 2 million cells per second. The stimulus for erythropoiesis is the hormone erythropoietin, secreted mostly by the kidney. This hormone triggers more of the pleuripotential stem cells (hemocytoblasts) to follow the pathway to red blood cells and to divide more rapidly.
It takes from 3 to 5 days for development of a reticulocyte from a hemocytoblast. Reticulocytes, immature rbc, move into the circulation and develop over a 1 to 2 day period into mature erythrocytes. About 1 to 2 % of rbc in the circulation are reticulocytes, and the exact percentage is a measure of the rate of erythropoiesis.
Carbon Dioxide Transport
Carbon dioxide (CO2) combines with water forming carbonic acid, which dissociates into a hydrogen ion (H+) and a bicarbonate ions:
CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3−
95% of the CO2 generated in the tissues is carried in the red blood cells:
- It probably enters (and leaves) the cell by diffusing through transmembrane channels in the plasma membrane. (One of the proteins that forms the channel is the D antigen that is the most important factor in the Rh system of blood groups.)
- Once inside, about one-half of the CO2 is directly bound to hemoglobin (at a site different from the one that binds oxygen).
- The rest is converted — following the equation above — by the enzyme carbonic anhydrase into
- bicarbonate ions that diffuse back out into the plasma and
- hydrogen ions (H+) that bind to the protein portion of the hemoglobin (thus having no effect on pH).
Only about 5% of the CO2 generated in the tissues dissolves directly in the plasma. (A good thing, too: if all the CO2 we make were carried this way, the pH of the blood would drop from its normal 7.4 to an instantly-fatal 4.5!)
When the red cells reach the lungs, these reactions are reversed and CO2 is released to the air of the alveoli.
Chemical Controls of Respiration
A. Chemoreceptors (CO2, O2, H+)
1. central chemoreceptors - located in the medulla
2. peripheral chemoreceptors - large vessels of neck
B. Carbon Dioxide Effects
1. a powerful chemical regulator of breathing by increasing H+ (lowering pH)
a. hypercapnia Carbon Dioxide increases ->
Carbonic Acid increases ->
pH of CSF decreases (higher H+)- >
DEPTH & RATE increase (hyperventilation)
b. hypocapnia - abnormally low Carbon Dioxide levels which can be produced by excessive hyperventilation; breathing into paper bag increases blood Carbon Dioxide levels
C. Oxygen Effects
1. aortic and carotid bodies - oxygen chemoreceptors
2. slight Ox decrease - modulate Carb Diox receptors
3. large Ox decrease - stimulate increase ventilation
4. hypoxic drive - chronic elevation of Carb Diox (due to disease) causes Oxygen levels to have greater effect on regulation of breathing
D. pH Effects (H+ ion)
1. acidosis - acid buildup (H+) in blood, leads to increased RATE and DEPTH (lactic acid)
E. Overview of Chemical Effects
Chemical Breathing Effect
increased Carbon Dioxide (more H+) increase
decreased Carbon Dioxide (less H+) decrease
slight decrease in Oxygen effect CO2 system
large decrease in Oxygen increase ventilation
decreased pH (more H+) increase
increased pH (less H+) decrease
Alveolar Ventilation: is the volume of air of new air , entering the alveoli and adjacent gas exchange areas each minute . It equals to multiplying of respiratory rate by ( tidal volume - dead space).
Va = R rate X (TV- DsV)
= 12 X ( 500-150)
= 4200 ml of air.
CNS PROTECTION
- Bones of the Skull Frontal, Temporal, Parietal, Sphenoid, Occipital
- Cranial Meninges Dura mater, Arachnoid Space, Pia mater
- Cerebrospinal Fluid
Secreted by Chroid Plexi in Ventricles
Circulation through ventricles and central canal
Lateral and Median apertures from the 4th ventricle into the subarachnoid space
Arachnoid villi of the superior sagittal sinus return CSF to the venous circulation
Hydrocephalic Condition, blockage of the mesencephalic aqueduct, backup of CSF, Insertion of a shunt to drain the excess CSF