Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Damage to Spinal Nerves and Spinal Cord

Damage

Possible cause of damage

Symptoms associated with innervated area

Peripheral nerve

Mechanical injury

Loss of muscle tone. Loss of reflexes. Flaccid paralysis. Denervation atrophy. Loss of sensation

Posterior root

Tabes dorsalis

Paresthesia. Intermittent sharp pains. Decreased sensitivity to pain. Loss of reflexes. Loss of sensation. Positive Romberg sign. High stepping and slapping of feet.

Anterior Horn

Poliomyelitis

Loss of muscle tone.  Loss of reflexes. Flaccid paralysis.  Denervation atrophy

Lamina X (gray matter)

Syringomyelia

Bilateral loss of pain and temperature sense only at afflicted cord level. Sensory dissociation. No sensory impairment below afflicted level

Anterior horn and lateral corticospinal tract

Amyotrophic lateral sclerosis

Muscle weakness.  Muscle atrophy. Fasciculations of hand and arm muscles. Spastic paralysis

Posterior and lateral funiculi

Subacute combined degeneration

Loss of position sense. Loss of vibratory sense. Positive Romberg sign. Muscle weakness. Spasticity. Hyperactive tendon reflexes. Positive Babinski sign.

Hemisection of the spinal cord

Mechanical injury

Brown-Sequard syndrome

Below cord level on injured side

Flaccid paralysis. Hyperactive tendon reflexes. Loss of position sense. Loss of vibratory sense. Tactile impairment

Below cord level on opposite side beginning one or two segments below injury

Loss of pain and temperature

Platelets

Platelets are cell fragments produced from megakaryocytes.

Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.

When blood vessels are damaged, fibrils of collagen are exposed.

  • von Willebrand factor links the collagen to platelets forming a plug of platelets there.
  • The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
  • (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)

ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.

Transport of Carbon Dioxide

A.    Dissolved in Blood Plasma (7-10%)

B.    Bound to Hemoglobin (20-30%)

1.    carbaminohemoglobin - Carb Dioxide binds to an amino acid on the polypeptide chains

2.    Haldane Effect - the less oxygenated blood is, the more Carb Diox it can carry

a.    tissues - as Oxygen is unloaded, affinity for Carb Dioxide increases
b.    lungs - as Oxygen is loaded, affinity for Carb Dioxide decreases, allowing it to be released

C.    Bicarbonate Ion Form in Plasma (60-70%)

1.    Carbon Dioxide combines with water to form Bicarbonate

CO2 + H2O <==> H2CO3 <==> H+ + HCO3-

2.    carbonic anhydrase - enzyme in RBCs that catalyzes this reaction in both directions

a.    tissues - catalyzes formation of Bicarbonate
b.    lungs - catalyzes formation of Carb Dioxide

3.    Bohr Effect - formation of Bicarbonate (through Carbonic Acid) leads to LOWER pH (H+ increase), and more unloading of Oxygen to tissues

a.    since hemoglobin "buffers" to H+, the actual pH of blood does not change much

4.    Chloride Shift - chloride ions move in opposite direction of the entering/leaving Bicarbonate, to prevent osmotic problems with RBCs

D.    Carbon Dioxide Effects on Blood pH

1.    carbonic acid-bicarbonate buffer system
    
low pH       → HCO3- binds to H+
high pH     →   H2CO3 releases H+
    
2.     low shallow breaths    → HIGH Carb Dioxide    → LOW pH (higher H+)
3.     rapid deep breaths     → LOW Carb Dioxide   → HIGH pH (lower H+)

Membrane Structure & Function

Cell Membranes

  • Cell membranes are phospholipid bilayers (2 layers)
  • Bilayer forms a barrier to passage of molecules in an out of cell
  • Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
  • Cholesterol (another lipid) stabilizes cell membranes
  • the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water

Membranes Also Contain Proteins

  • Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
  • Hydrophobic = doesn't like water = likes lipids
  • Membrane proteins have many functions:
    • receptors for hormones
    • pumps for transporting materials across the membrane
    • ion channels
    • adhesion molecules for holding cells to extracellular matrix

cell recognition antigens

The pancreas

The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.

Pancreatic fluid contains:

  • sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
  • pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
  • pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
  • 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
    • trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
    • chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
    • elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
    • carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
  • nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.

The secretion of pancreatic fluid is controlled by two hormones:

  • secretin, which mainly affects the release of sodium bicarbonate, and
  • cholecystokinin (CCK), which stimulates the release of the digestive enzymes.

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

  1. PATHOPHYSIOLOGY OF THE CONDUCTION SYSTEM

  2. Cardiac arrhythmias = deviation from normal rate, rhythm

     

    1. Heart block (types) = conduction system damage
      1. Complete Heart Block = 3rd degree block
        1. idioventricular beat (35-45/min)
        2. Atria at normal sinus rhythm
        3. Periods of asystole (dizziness, fainting)
        4. Causes = myocardial infarction of ventricular septum, surgical correction of interseptal defects, drugs
      2. Incomplete Heart Block = 2nd degree block
        1. Not all atrial beats reach ventricle
        2. Ventricular beat every 2nd, 3rd, etc. atrial beat, (2:1 block, 3:1 block)
      3. Incomplete Heart Block = 1st degree block
        1. All atrial beats reach ventricle
        2. PR interval abnormally long = slower conduction
      4. Bundle branch blocks (right or left)
        1. Impulses travel down one side and cross over
        2. Ventricular rate normal, QRS prolonged or abnormal
    2. Fibrillation
      1. Asynchronous contractions = twitching movements
      2. Loss of synchrony = little to No output
      3. Atrial Fibrillation
        1. Irregular ventricular beat & depressed pumping efficiency
        2. Atrial beat = 125 - 150/min, pulse feeble = 60 - 70/min
        3. Treatment = Digitalis - reduces rate of ventricular contraction, reduces pulse deficit
      4. Ventricular Fibrillation
        1. Almost no blood pumped to systemic system
        2. ECG = extremely bizarre
        3. Several minutes = fatal
        4. Treatment = defibrillation, cardiac massage can maintain some cardiac output

Explore by Exams