Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

  • Sensory:
    • Somatic (skin & muscle) Senses:
      Postcentral gyrus (parietal lobe). This area senses touch, pressure, pain, hot, cold, & muscle position. The arrangement is upside-down (head below, feet above) and is switched from left to right (sensations from the right side of the body are received on the left side of the cortex). Some areas (face, hands) have many more sensory and motor nerves than others. A drawing of the body parts represented in the postcentral gyrus, scaled to show area, is called a homunculus .
    • Vision:
      Occipital lobe, mostly medial, in calcarine sulcus. Sensations from the left visual field go to the right cortex and vice versa. Like other sensations they are upside down. The visual cortex is very complicated because the eye must take into account shape, color and intensity.
    • Taste:
      Postcentral gyrus, close to lateral sulcus. The taste area is near the area for tongue somatic senses.
    • Smell:
       The olfactory cortex is not as well known as some of the other areas. Nerves for smell go to the olfactory bulb of the frontal cortex, then to other frontal cortex centers- some nerve fibers go directly to these centers, but others come from the thalamus like most other sensory nerves
    • Hearing:
      Temporal lobe, near junction of the central and lateral sulci. Mostly within the lateral sulcus. There is the usual crossover and different tones go to different parts of the cortex. For complex patterns of sounds like speech and music other areas of the cortex become involved.
  • Motor:
    • Primary Motor ( Muscle Control):
      Precentral gyrus (frontal lobe). Arranged like a piano keyboard: stimulation in this area will cause individual muscles to contract. Like the sensory cortex, the arrangement is in the form of an upside-down homunculus. The fibers are crossed- stimulation of the right cortex will cause contraction of a muscle on the left side of the body.
    • Premotor (Patterns of Muscle Contraction):
      Frontal lobe in front of precentral gyrus. This area helps set up learned patterns of muscle contraction (think of walking or running which involve many muscles contracting in just the right order).
    • Speech-Muscle Control:
      Broca's area, frontal lobe, usually in left hemisphere only. This area helps control the patterns of muscle contraction necessary for speech. Disorders in speaking are called aphasias.
  • Perception:
    • Speech- Comprehension:
      Wernicke's area, posterior end of temporal lobe, usually left hemisphere only. Thinking about words also involves areas in the frontal lobe.
    • Speech- Sound/Vision Association:
      Angular gyrus, , makes connections between sounds and shapes of words

  • Partial Pressures of O2 and CO2 in the body (normal, resting conditions):

  • Alveoli
    • PO2 = 100 mm Hg
    • PCO2 = 40 mm Hg
  • Alveolar capillaries
    • Entering the alveolar capillaries
      • PO2 = 40 mm Hg (relatively low because this blood has just returned from the systemic circulation & has lost much of its oxygen)
      • PCO2 = 45 mm Hg (relatively high because the blood returning from the systemic circulation has picked up carbon dioxide) 
  • While in the alveolar capillaries, the diffusion of gasses occurs: oxygen diffuses from the alveoli into the blood & carbon dioxide from the blood into the alveoli.

  • Leaving the alveolar capillaries
    • PO2 = 100 mm Hg
    • PCO2 = 40 mm Hg
  • Blood leaving the alveolar capillaries returns to the left atrium & is pumped by the left ventricle into the systemic circulation. This blood travels through arteries & arterioles and into the systemic, or body, capillaries. As blood travels through arteries & arterioles, no gas exchange occurs.
    • Entering the systemic capillaries
      • PO2 = 100 mm Hg
      • PCO2 = 40 mm Hg
    • Body cells (resting conditions)
      • PO2 = 40 mm Hg
      • PCO2 = 45 mm Hg
  • Because of the differences in partial pressures of oxygen & carbon dioxide in the systemic capillaries & the body cells, oxygen diffuses from the blood & into the cells, while carbon dioxide diffuses from the cells into the blood.
    • Leaving the systemic capillaries
      • PO2 = 40 mm Hg
      • PCO2 = 45 mm Hg
  • Blood leaving the systemic capillaries returns to the heart (right atrium) via venules & veins (and no gas exchange occurs while blood is in venules & veins). This blood is then pumped to the lungs (and the alveolar capillaries) by the right ventricle.

SPECIAL VISCERAL AFFERENT (SVA) PATHWAYS

Taste

Special visceral afferent (SVA) fibers of cranial nerves VII, IX, and X conduct signals into the solitary tract of the brainstem, ultimately terminating in the nucleus of the solitary tract on the ipsilateral side.

Second-order neurons cross over and ascend through the brainstem in the medial lemniscus to the VPM of the thalamus.

Thalamic projections to area 43 (the primary taste area) of the postcentral gyrus complete the relay.

SVA VII fibers conduct from the chemoreceptors of taste buds on the anterior twothirds of the tongue, while SVA IX fibers conduct taste information from buds on the posterior one-third of the tongue.

SVA X fibers conduct taste signals from those taste cells located throughout the fauces.

Smell

The smell-sensitive cells (olfactory cells) of the olfactory epithelium project their central processes through the cribiform plate of the ethmoid bone, where they synapse with mitral cells. The central processes of the mitral cells pass from the olfactory bulb through the olfactory tract, which divides into a medial and lateral portion The lateral olfactory tract terminates in the prepyriform cortex and parts of the amygdala of the temporal lobe.

These areas represent the primary olfactory cortex. Fibers then project from here to area 28, the secondary olfactory area, for sensory evaluation. The medial olfactory tract projects to the anterior perforated sub­stance, the septum pellucidum, the subcallosal area, and even the contralateral olfactory tract.

Both the medial and lateral olfactory tracts contribute to the visceral reflex pathways, causing the viscerosomatic and viscerovisceral responses.

  • The Autonomic Nervous System (ANS) Controls the Body's Internal Environment in a Coordinated Manner

  • The ANS helps control the heart rate, blood pressure, digestion, respiration, blood pH and other bodily functions through a series of complex reflex actions
  • These controls are done automatically, below the conscious level
  • To exert this control the activities of many different organs must be coordinated so they work to accomplish the same goal
  • In the ANS there are 2 nerves between the central nervous system (CNS) and the organ. The nerve cell bodies for the second nerve are organized into ganglia:
    • CNS -> Preganglionic nerve -> Ganglion -> Postganglionic nerve -> Organ
  • At each junction neurotransmitters are released and carry the signal to the next nerve or organ.
  • The ANS has 2 Divisions, Sympathetic and Parasympathetic

     

  • Comparison of the 2 systems:
  •  

    Anatomical
    Location

     Preganglionic
    Fibers

     Postganglionic
    Fibers

     Transmitter
    (Ganglia)

     Transmitter
    (Organs)

     Sympathetic

     Thoracic/
    Lumbar

     Short

    Long

    ACh

    NE

     Parasympathetic

     Cranial/
    Sacral

     Long

    Short

    ACh

    ACh

     

    The Sympathetic is the "Fight or Flight" Branch of the ANS

  • Emergency situations, where the body needs a sudden burst of energy, are handled by the sympathetic system
  • The sympathetic system increases cardiac output and pulmonary ventilation, routes blood to the muscles, raises blood glucose and slows down digestion, kidney filtration and other functions not needed during emergencies
  • Whole sympathetic system tends to "go off" together
  • In a controlled environment the sympathetic system is not required for life, but it is essential for any stressful situation
  • The Parasympathetic is the Rest and Digest Branch of the ANS

  • The parasympathetic system promotes normal maintenance of the body- acquiring building blocks and energy from food and getting rid of the wastes
  • It promotes secretions and mobility of different parts of the digestive tract.
  • Also involved in urination, defecation.
  • Does not "go off" together; activities initiated when appropriate
  • The vagus nerve (cranial number 10) is the chief parasympathetic nerve
  • Other cranial parasympathetic nerves are: III (oculomotor), VII (facial) and IX (glossopharyngeal)
  • The Hypothalamus Has Central Control of the ANS

  • The hypothalamus is involved in the coordination of ANS responses,
  • One section of the hypothalamus seems to control many of the "fight or flight" responses; another section favors "rest and digest" activities
  • The Adrenal Medulla is an Extension of the Sympathetic Nervous System

  • The adrenal medulla behaves like a combined autonomic ganglion and postsynaptic sympathetic nerve (see diagram above)
  • Releases both norepinephrine and epinephrine in emergency situations
    • Releases a mixture of epinephrine (E = 80%) and norepinephrine (NE = 20%)
    • Epinephrine = adrenaline
  • This action is under control of the hypothalamus
  • Sympathetic & Parasympathetic Systems

  • Usually (but not always) both sympathetic and parasympathetic nerves go to an organ and have opposite effects
  • You can predict about 90% of the sympathetic and parasympathetic responses using the 2 phrases: "Fight or Flight" and "Rest and Digest".
  • Special cases:
    • Occasionally the 2 systems work together: in sexual intercourse the parasympathetic promotes erection and the sympathetic produces ejaculation
    • Eye: the sympathetic response is dilation and relaxation of the ciliary muscle for far vision (parasympathetic does the opposite)
    • Urination: the parasympathetic system relaxes the sphincter muscle and promotes contraction of muscles of the bladder wall -> urination (sympathetic blocks urination)
    • Defecation: the parasympathetic system causes relaxation of the anal sphincter and stimulates colon and rectum to contract -> defecation (sympathetic blocks defecation)
  •  Organ

     Parasympathetic Response
    "Rest and Digest"

     Sympathetic Response
    "Fight or Flight"

     Heart
    (baroreceptor reflex)

    Decreased heart rate
    Cardiac output decreases

    Increased rate and strength of contraction
    Cardiac output increases

     Lung Bronchioles

     Constriction

    Dilation

     Liver Glycogen

    No effect

     Glycogen breakdown
    Blood glucose increases

     Fat Tissue

     No effect

    Breakdown of fat
    Blood fatty acids increase

     Basal Metabolism

     No effect

     Increases ~ 2X

     Stomach

     Increased secretion of HCl & digestive enzymes
    Increased motility

    Decreased secretion
    Decreased motility

     Intestine

     Increased secretion of HCl & digestive enzymes
    Increased motility

     Decreased secretion
    Decreased motility

     Urinary bladder

     Relaxes sphincter
    Detrusor muscle contracts
    Urination promoted

    Constricts sphincter
    Relaxes detrusor
    Urination inhibited

     Rectum

     Relaxes sphincter
    Contracts wall muscles
    Defecation promoted

     Constricts sphincter
    Relaxes wall muscles
    Defecation inhibited

     Eye

     Iris constricts
    Adjusts for near vision

    Iris dilates
    Adjusts for far vision

     Male Sex Organs

     Promotes erection

     Promotes ejaculation

     

Oxygen Uptake in the Lungs is Increased About 70X by Hemoglobin in the Red Cells

  • In the lungs oxygen must enter the blood
  • A small amount of oxygen dissolves directly in the serum, but 98.5% of the oxygen is carried by hemoglobin
  • All of the hemoglobin is found within the red blood cells (RBCs or erythrocytes)
  • The hemoglobin content of the blood is about 15 gm/deciliter (deciliter = 100 mL)
  • Red cell count is about 5 million per microliter

Each Hemoglobin Can Bind Four O2 Molecules (100% Saturation)

  • Hemoglobin is a protein molecule with 4 protein sub-units (2 alphas and 2 betas)
    • Each of the 4 sub-units contains a heme group which gives the protein a red color
    • Each heme has an iron atom in the center which can bind an oxygen molecule (O2)
    • The 4 hemes in a hemoglobin can carry a maximum of 4 oxygen molecules
  • When hemoglobin is saturated with oxygen it has a bright red color; as it loses oxygen it becomes bluish (cyanosis)

The Normal Blood Hematocrit is Just Below 50%

  • Blood consists of cells suspended in serum
  • More than 99% of the cells in the blood are red blood cells designed to carry oxygen
    • 25% of all the cells in the body are RBCs
  • The volume percentage of cells in the blood is called the hematocrit
  • Normal hematocrits are about 40% for women and 45% for men

At Sea Level the Partial Pressure of O2 is High Enough to Give Nearly 100% Saturation of Hemoglobin

  • As the partial pressure of oxygen in the alveoli increases the hemoglobin in the red cells passing through the lungs rises until the hemoglobin is 100% saturated with oxygen
    • At 100% saturation each hemoglobin carries 4 O2 molecules
    • This is equal to 1.33 mL O2 per gram of hemoglobin
  • A person with 15 gm Hb/deciliter can carry:
    • Max O2 carriage = 1.33 mL O2/gm X 15 gm/deciliter = 20 mL O2/deciliter
  • A plot of % saturation vs pO2 gives an S-shaped "hemoglobin dissociation curve"
  • At 100% saturation each hemoglobin binds 4 oxygen molecules

At High Altitudes Hemoglobin Saturation May be Well Below 100%

  • At the alveolar pO2 of 105 mm Hg at sea level the hemoglobin will be about 97% saturated, but the saturation will fall at high altitudes
  • At 12,000 feet altitude alveolar pO2 will be about 60 mm Hg and the hemoglobin will be 90% saturated
  • At 29,000 feet (Mt. Everest) alveolar pO2 is about 24 mm Hg and the hemoglobin will be only 42% saturated
  • At very high altitudes most climbers must breath pure oxygen from tanks
  • During acclimatization to high altitude the hematocrit can rise to about 60%- this increases the amount of oxygen that can be carried
  • Hematocrits above 60% are not useful because the blood viscosity will increase to the point where it impairs circulation

Contractility : Means ability of cardiac muscle to convert electrical energy of action potential into mechanical energy ( work).
The excitation- contraction coupling of cardiac muscle is similar to that of skeletal muscle , except the lack of motor nerve stimulation. 

Cardiac muscle is a self-excited muscle , but the principles of contraction are the same . There are many rules that control the contractility of the cardiac muscles, which are:

1. All or none rule: due to the syncytial nature of the cardiac muscle.There are atrial syncytium and ventricular syncytium . This rule makes the heart an efficient pump.

2. Staircase phenomenon : means gradual increase in muscle contraction following rapidly repeated stimulation..

3. Starling`s law of the heart: The greater the initial length of cardiac muscle fiber , the greater the force of contraction. The initial length is determined by the degree of diastolic filling .The pericardium prevents overstretching of heart , and allows optimal increase in diastolic volume.

Thankful to this law , the heart is able to pump any amount of blood that it receives. But overstretching of cardiac muscle fibers may cause heart failure.

Factors affecting  contractility ( inotropism)

I. Positive inotropic factors:

1. sympathetic stimulation: by increasing the permeability of sarcolemma to calcium.
2. moderate increase in temperature . This due to increase metabolism to increase ATP , decrease viscosity of myocardial structures, and increasing calcium influx.
3. Catecholamines , thyroid hormone, and glucagon hormones.
4. mild alkalosis
5. digitalis
6. Xanthines ( caffeine and theophylline )

II. Negative inotropic factors:

1. Parasympathetic stimulation : ( limited to atrial contraction)
2. Acidosis
3. Severe alkalosis
4. excessive warming and cooling .
5. Drugs ;like : Quinidine , Procainamide , and barbiturates .
6. Diphtheria and typhoid toxins.

Proteinuria—Protein content in urine, often due to leaky or damaged glomeruli.

Oliguria—An abnormally small amount of urine, often due to shock or kidney damage.

Polyuria—An abnormally large amount of urine, often caused by diabetes.

Dysuria—Painful or uncomfortable urination, often from urinary tract infections.

Hematuria—Red blood cells in urine, from infection or injury.

Glycosuria—Glucose in urine, due to excess plasma glucose in diabetes, beyond the amount able to be reabsorbed in the proximal convoluted tubule.

Explore by Exams