Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

The pancreas

The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.

Pancreatic fluid contains:

  • sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
  • pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
  • pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
  • 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
    • trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
    • chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
    • elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
    • carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
  • nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.

The secretion of pancreatic fluid is controlled by two hormones:

  • secretin, which mainly affects the release of sodium bicarbonate, and
  • cholecystokinin (CCK), which stimulates the release of the digestive enzymes.

 Acute Obstructive Disorders
 1.    Heimlich maneuver
 2.    Bypass, tracheostomy w/catheter to suck up secretion

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

Proteins:

  • about 50 - 60% of the dry mass of a typical cell
  • subunit is the amino acid & amino acids are linked by peptide bonds
  • 2 functional categories = structural (proteins part of the structure of a cell like those in the cell membrane) & enzymes

Enzymes are catalysts. Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze. In doing so, they lower the amount of activation energy needed and thus speed up the reaction

CNS PROTECTION

 

- Bones of the Skull       Frontal, Temporal, Parietal, Sphenoid, Occipital

- Cranial Meninges         Dura mater, Arachnoid Space, Pia mater

- Cerebrospinal Fluid

Secreted by Chroid Plexi in Ventricles

Circulation through ventricles and central canal

Lateral and Median apertures from the 4th ventricle into the subarachnoid space

Arachnoid villi of the superior sagittal sinus return CSF to the venous circulation

Hydrocephalic Condition, blockage of the mesencephalic aqueduct, backup of CSF, Insertion of a shunt to drain the excess CSF

Reflexes

A reflex is a direct connection between stimulus and response, which does not require conscious thought. There are voluntary and involuntary reflexes.

The Stretch Reflex:

The stretch reflex in its simplest form involves only 2 neurons, and is therefore sometimes called a 2-neuron reflex. The two neurons are a sensory and a motor neuron. The sensory neuron is stimulated by stretch (extension) of a muscle. Stretch of a muscle normally happens when its antagonist contracts, or artificially when its tendon is stretched, as in the knee jerk reflex. Muscles contain receptors called muscle spindles. These receptors respond to the muscles's stretch. They send stimuli back to the spinal cord through a sensory neuron which connects directly to a motor neuron serving the same muscle. This causes the muscle to contract, reversing the stretch. The stretch reflex is important in helping to coordinate normal movements in which antagonistic muscles are contracted and relaxed in sequence, and in keeping the muscle from overstretching.

Since at the time of the muscle stretch its antagonist was contracting, in order to avoid damage it must be inhibited or tuned off in the reflex. So an additional connection through an interneuron sends an inhibitory pathway to the antagonist of the stretched muscle - this is called reciprocal inhibition.

 

The Deep Tendon Reflex:

Tendon receptors respond to the contraction of a muscle. Their function, like that of stretch reflexes, is the coordination of muscles and body movements. The deep tendon reflex involves sensory neurons, interneurons, and motor neurons. The response reverses the original stimulus therefore causing relaxation of the muscle stimulated. In order to facilitate that the reflex sends excitatory stimuli to the antagonists causing them to contract - reciprocal activation.

 

The stretch and tendon reflexes complement one another. When one muscle is stretching and stimulating the stretch reflex, its antagonist is contracting and stimulating the tendon reflex. The two reflexes cause the same responses thus enhancing one another.

 

The Crossed Extensor Reflex -

The crossed extensor reflex is just a withdrawal reflex on one side with the addition of inhibitory pathways needed to maintain balance and coordination. For example, you step on a nail with your right foot as you are walking along. This will initiate a withdrawal of your right leg. Since your quadriceps muscles, the extensors, were contracting to place your foot forward, they will now be inhibited and the flexors, the hamstrings will now be excited on your right leg. But in order to maintain your balance and not fall down your left leg, which was flexing, will now be extended to plant your left foot (e.g. crossed extensor). So on the left leg the flexor muscles which were contracting will be inhibited, and the extensor muscles will be excited

Water: comprises 60 - 90% of most living organisms (and cells) important because it serves as an excellent solvent & enters into many metabolic reactions

  • Intracellular (inside cells) = ~ 34 liters
  • Interstitial (outside cells) = ~ 13 liters
  • Blood plasma = ~3 liters

40% of blood is red blood cells (RBCs)

plasma is similar to interstitial fluid, but contains plasma proteins

serum = plasma with clotting proteins removed

intracellular fluid is very different from interstitial fluid (high K concentration instead of high Na concentration, for example)

  • Capillary walls (1 cell thick) separate blood from interstitial fluid
  • Cell membranes separate intracellular and interstitial fluids
  • Loss of about 30% of body water is fatal

 

Ions = atoms or molecules with unequal numbers of electrons and protons:

  • found in both intra- & extracellular fluid
  • examples of important ions include sodium, potassium, calcium, and chloride

Ions (Charged Atoms or Molecules) Can Conduct Electricity

  • Giving up electron leaves a + charge (cation)
  • Taking on electron produces a - charge (anion)
  • Ions conduct electricity
  • Without ions there can be no nerves or excitability
    • Na+ and K+ cations  
    • Ca2+ and Mg2+ cations  control metabolism and trigger muscle contraction and secretion of hormones and transmitters

Na+ & K+ are the Major Cations in Biological Fluids

  • High K+ in cells, high Na+ outside
  • Ion gradients maintained by Na pump (1/3 of basal metabolism)
  • Think of Na+ gradient as a Na+ battery- stored electrical energy
  • K+ gradient forms a K+ battery
  • Energy stored in Na+ and K+ batteries can be tapped when ions flow
  • Na+ and K+ produce action potential of excitable cells

Explore by Exams