Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Concentration versus diluting urine 

Kidney is a major route for eliminating fluid from the body to accomplish water balance. Urine excretion is the last step in urine formation. Everyday both kidneys excrete about 1.5 liters of urine.
Depending on the hydrated status of the body, kidney either excretes concentrated urine ( if the plasma is hypertonic like in dehydrated status ) or diluted urine ( if the plasma is hypotonic) .
This occurs thankful to what is known as countercurrent multiplying system, which functions thankfully to establishing large vertical osmotic gradient .
To understand this system, lets review the following facts:
1. Descending limb of loop of Henle is avidly permeable to water.
2. Ascending limb of loop of Henly is permeable to electrolytes , but impermeable to water. So fluid will not folow electrolytes by osmosis.and thus Ascending limb creates hypertonic interstitium that will attract water from descending limb.
Pumping of electrolytes
3. So: There is a countercurrent flow produced by the close proximity of the two limbs.                   
                                                   
Juxtamedullary nephrons have long loop of Henle that dips deep in the medulla , so the counter-current system is more obvious and the medullary interstitium is always hypertonic . In addition, peritubular capillaries in the medulla are straigh ( vasa recta) in which flow is rapid and rapidly reabsorb water maintaining hypertonic medullary interstitium.

In distal tubules water is diluted. If plasma is hypertonic, this will lead to release of ADH by hypothalamus, which will cause reabsorption of water in collecting tubules and thus excrete concentrated urine.

If plasma is hypotonic ADH will be inhibited and the diluted urine in distal  tubules will be excreted as diluted urine.

Urea  contributes to concentrating and diluting of urine as follows:

Urea is totally filtered and then 50% of filtrated urea will be reabsorbed to the interstitium, this will increase the osmolarity of medullary interstitium ( becomes hypertonic ). Those 50% will be secreted in ascending limb of loop of Henle back to tubular fluid to maintain osmolarity of tubular fluid. 55% of urea in distal nephron will be reabsorbed in collecting ducts back to the interstitium ( under the effect of ADH too) . This urea cycle additionally maintain hypertonic interstitium.

Chemical Controls of Respiration

A.    Chemoreceptors (CO2, O2, H+)

1.    central chemoreceptors - located in the medulla
2.    peripheral chemoreceptors - large vessels of neck

B.    Carbon Dioxide Effects

1.    a powerful chemical regulator of breathing by increasing H+ (lowering pH)
    
a. hypercapnia            Carbon Dioxide increases -> 
                        Carbonic Acid increases ->
                        pH of CSF decreases (higher H+)- >
                        
DEPTH & RATE increase (hyperventilation)

b. hypocapnia - abnormally low Carbon Dioxide levels which can be produced by excessive hyperventilation; breathing into paper bag increases blood Carbon Dioxide levels

C.     Oxygen Effects

1.    aortic and carotid bodies - oxygen chemoreceptors

2.    slight Ox decrease - modulate Carb Diox receptors
3.    large Ox decrease - stimulate increase ventilation
4.    hypoxic drive - chronic elevation of Carb Diox (due to disease) causes Oxygen levels to have greater effect on regulation of breathing


D.    pH Effects (H+ ion)

1.    acidosis - acid buildup (H+) in blood, leads to increased RATE and DEPTH (lactic acid)


E.    Overview of Chemical Effects

 Chemical                             Breathing Effect

increased Carbon Dioxide (more H+)     increase
decreased Carbon Dioxide (less H+)     decrease

slight decrease in Oxygen             effect CO2 system
large decrease in Oxygen             increase ventilation

decreased pH (more H+)                 increase
increased pH (less H+)                 decrease

The small intestine

Digestion within the small intestine produces a mixture of disaccharides, peptides, fatty acids, and monoglycerides. The final digestion and absorption of these substances occurs in the villi, which line the inner surface of the small intestine.

This scanning electron micrograph (courtesy of Keith R. Porter) shows the villi carpeting the inner surface of the small intestine.


The crypts at the base of the villi contain stem cells that continuously divide by mitosis producing

  • more stem cells
  • cells that migrate up the surface of the villus while differentiating into
    1. columnar epithelial cells (the majority). They are responsible for digestion and absorption.
    2. goblet cells, which secrete mucus;
    3. endocrine cells, which secrete a variety of hormones;
  • Paneth cells, which secrete antimicrobial peptides that sterilize the contents of the intestine.

All of these cells replace older cells that continuously die by apoptosis.

The villi increase the surface area of the small intestine to many times what it would be if it were simply a tube with smooth walls. In addition, the apical (exposed) surface of the epithelial cells of each villus is covered with microvilli (also known as a "brush border"). Thanks largely to these, the total surface area of the intestine is almost 200 square meters, about the size of the singles area of a tennis court and some 100 times the surface area of the exterior of the body.

Incorporated in the plasma membrane of the microvilli are a number of enzymes that complete digestion:

  • aminopeptidases attack the amino terminal (N-terminal) of peptides producing amino acids.
  • disaccharidasesThese enzymes convert disaccharides into their monosaccharide subunits.
    • maltase hydrolyzes maltose into glucose.
    • sucrase hydrolyzes sucrose (common table sugar) into glucose and fructose.
    • lactase hydrolyzes lactose (milk sugar) into glucose and galactose.

Fructose simply diffuses into the villi, but both glucose and galactose are absorbed by active transport.

  • fatty acids and monoglycerides. These become resynthesized into fats as they enter the cells of the villus. The resulting small droplets of fat are then discharged by exocytosis into the lymph vessels, called lacteals, draining the villi.

The Cardiac Cycle: the sequence of events in one heartbeat.

systole - the contraction phase; unless otherwise specified refers to left ventricle, but each chamber has its own systole.

diastole - the relaxation phase; unless otherwise specified refers to left ventricle, but each chamber has its own diastole.

1) quiescent period - period when all chambers are at rest and filling. 70% of ventricular filling occurs during this period. The AV valves are open, the semilunar valves are closed.

2) atrial systole - pushes the last 30% of blood into the ventricle.

3) atrial diastole - atria begin filling.

4) ventricular systole - First the AV valves close causing the first heart sound, then after the isovolumetric contraction phase the semilunar valves open permitting ventricular ejection of blood into the arteries.

5) ventricular diastole - As the ventricles relax the semilunar valves close first producing the second heart sound, then after the isovolumetric relaxation phase the AV valves open allowing ventricular filling.

Physiology - science that describes how organisms FUNCTION and survive in continually changing environments  

The large intestine (colon)

The large intestine receives the liquid residue after digestion and absorption are complete. This residue consists mostly of water as well as materials (e.g. cellulose) that were not digested. It nourishes a large population of bacteria (the contents of the small intestine are normally sterile). Most of these bacteria (of which one common species is E. coli) are harmless. And some are actually helpful, for example, by synthesizing vitamin K. Bacteria flourish to such an extent that as much as 50% of the dry weight of the feces may consist of bacterial cells. Reabsorption of water is the chief function of the large intestine. The large amounts of water secreted into the stomach and small intestine by the various digestive glands must be reclaimed to avoid dehydration.

Exchange of gases:

  • External respiration:
    • exchange of O2 & CO2 between external environment & the cells of the body
    • efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
  • Internal respiration - intracellular use of O2 to make ATP
  • occurs by simple diffusion along partial pressure gradients

Explore by Exams