NEET MDS Lessons
Physiology
Blood Transfusions
- Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
- Most were further fractionated into components, including:
- RBCs. When refrigerated these can be used for up to 42 days.
- platelets. These must be stored at room temperature and thus can be saved for only 5 days.
- plasma. This can be frozen and stored for up to a year.
safety of donated blood
A variety of infectious agents can be present in blood.
- viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
- bacteria like the spirochete of syphilis
- protozoans like the agents of malaria and babesiosis
- prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)
and could be transmitted to recipients. To minimize these risks,
- donors are questioned about their possible exposure to these agents;
- each unit of blood is tested for a variety of infectious agents.
Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:
- HIV-1
- hepatitis C
- West Nile virus
- by the so-called nucleic acid-amplification test (NAT).
Exchange of gases:
- External respiration:
- exchange of O2 & CO2 between external environment & the cells of the body
- efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
- Internal respiration - intracellular use of O2 to make ATP
- occurs by simple diffusion along partial pressure gradients
Red Blood Cells (erythrocytes)
- Women average about 4.8 million of these cells per cubic millimeter (mm3; which is the same as a microliter [µl]) of blood.
- Men average about 5.4 x 106 per µl.
- These values can vary over quite a range depending on such factors as health and altitude.
- RBC precursors mature in the bone marrow closely attached to a macrophage.
- They manufacture hemoglobin until it accounts for some 90% of the dry weight of the cell.
- The nucleus is squeezed out of the cell and is ingested by the macrophage.
RBC have characteristic biconcave shape
Thus RBCs are terminally differentiated; that is, they can never divide. They live about 120 days and then are ingested by phagocytic cells in the liver and spleen. Most of the iron in their hemoglobin is reclaimed for reuse. The remainder of the heme portion of the molecule is degraded into bile pigments and excreted by the liver. Some 3 million RBCs die and are scavenged by the liver each second.
Red blood cells are responsible for the transport of oxygen and carbon dioxide.
Regulation of Blood Pressure by Hormones
The Kidney
One of the functions of the kidney is to monitor blood pressure and take corrective action if it should drop. The kidney does this by secreting the proteolytic enzyme renin.
- Renin acts on angiotensinogen, a plasma peptide, splitting off a fragment containing 10 amino acids called angiotensin I.
- angiotensin I is cleaved by a peptidase secreted by blood vessels called angiotensin converting enzyme (ACE) — producing angiotensin II, which contains 8 amino acids.
- angiotensin II
- constricts the walls of arterioles closing down capillary beds;
- stimulates the proximal tubules in the kidney to reabsorb sodium ions;
- stimulates the adrenal cortex to release aldosterone. Aldosterone causes the kidneys to reclaim still more sodium and thus water.
- increases the strength of the heartbeat;
- stimulates the pituitary to release the antidiuretic hormone (ADH, also known as arginine vasopressin).
All of these actions, which are mediated by its binding to G-protein-coupled receptors on the target cells, lead to an increase in blood pressure.
Typical Concentration Gradients and Membrane Potentials in Excitable Cells
The Na Pump is Particularly Important in the Kidney and Brain
- All cells have Na pumps in their membranes, but some cells have more than others
- Over-all Na pump activity may account for a third of your resting energy expenditure!
- In the kidney the Na pump activity is very high because it is used to regulate body salt and water concentrations
- Kidneys use enormous amounts of energy: 0.5% of body weight, but use 7% of the oxygen supply
- Pump activity is also high in the brain because Na and K gradients are essential for nerves
- The brain is another high energy organ; it is 2% of body weight, but uses 18% of the oxygen supply
In the Resting State Potassium Controls the Membrane Potential of Most Cells
- Resting cells have more open K channels than other types
- More K+ passes through membrane than other ions- therefore K+ controls the potential
- Blood K+ must be closely controlled because small changes will produce large changes in the membrane potentials of cells
- Raising K will make the membrane potential less negative (depolarization)
- High blood K+ can cause the heart to stop beating (it goes into permanent contraction)
During an Action Potential Na Channels Open, and Na Controls the Membrane Potential
- Whichever ion has the most open channels controls the membrane potential
- Excitable cells have Na channels that open when stimulated
- When large numbers of these channels open Na controls the membrane potential
Bile - produced in the liver and stored in the gallbladder, released in response to CCK . Bile salts (salts of cholic acid) act to emulsify fats, i.e. to split them so that they can mix with water and be acted on by lipase.
Pancreatic juice: Lipase - splits fats into glycerol and fatty acids. Trypsin, and chymotrypsin - protease enzymes which break polypeptides into dipeptides. Carboxypeptidase - splits dipeptide into amino acids. Bicarbonate - neutralizes acid. Amylase - splits polysaccharides into shorter chains and disaccharides.
Intestinal enzymes (brush border enzymes): Aminopeptidase and carboxypeptidase - split dipeptides into amino acids. Sucrase, lactase, maltase - break disaccharides into monosaccharides. Enterokinase - activates trypsinogen to produce trypsin. Trypsin then activates the precursors of chymotrypsin and carboxypeptidase. Other carbohydrases: dextrinase and glucoamylase. These are of minor importance.
The Nerve Impulse
When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:
Depolarization
The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.
Repolarization
The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).
Hyperpolarization
When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.
Refractory phase
The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.
Factors that affect sensitivity and speed
Sensitivity
Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.
Speed of Conduction
This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.