Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

  • There Are 12 Pairs of Cranial Nerves

  • The 12 pairs of cranial nerves emerge mainly from the ventral surface of the brain
  • Most attach to the medulla, pons or midbrain
  • They leave the brain through various fissures and foramina of the skull
  •  Nerve

     Name

     Sensory

     Motor

     Autonomic
    Parasympathetic

     I

     Olfactory

     Smell

     

     

     II

     Optic

     Vision

     

     

     III

    Oculomotor

     Proprioception

     4 Extrinsic eye muscles

      Pupil constriction
    Accomodation
    Focusing

     IV

     Trochlear

     Proprioception

     1 Extrinsic eye muscle (Sup.oblique)

     

     V

     Trigeminal

     Somatic senses
    (Face, tongue)

     Chewing

     

     VI

    Abducens

     Proprioception

     1 Extrinsic eye muscle (Lat. rectus)

     

     VII

     Facial

     Taste
    Proprioception
     

     Muscles of facial expression

     Salivary glands
    Tear glands

     VIII

     Auditory
    (Vestibulocochlear)

    Hearing, Balance

     

     

     IX

     Glossopharyngeal

     Taste
    Blood gases

     Swallowing
    Gagging

     Salivary glands

     X

     Vagus

    Blood pressure
    Blood gases
     Taste

     Speech
    Swallowing Gagging

    Many visceral organs
    (heart, gut, lungs)

     XI

     Spinal acessory

     Proprioception

     Neck muscles:
    Sternocleidomastoid
    Trapezius

     

     XII

     Hypoglossal

     Proprioception

     Tongue muscles
    Speech

     

     

  • Many of the functions that make us distinctly human are controlled by cranial nerves: special senses, facial expression, speech.
  • Cranial Nerves Contain Sensory, Motor and Parasympathetic Fibers

     

Hormones are carried by the blood throughout the entire body, yet they affect only certain cells.  The specific cells that respond to a given hormone have receptor sites for that hormone.  

 

This is sort of a lock and key mechanism.  If the key fits the lock, then the door will open.  If a hormone fits the receptor site, then there will be an effect.  If a hormone and a receptor site do not match, then there is no reaction.  All of the cells that have receptor sites for a given hormone make up the target tissue for that hormone.  In some cases, the target tissue is localized in a single gland or organ.  In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected.  

 

Hormones bring about their characteristic effects on target cells by modifying cellular activity.  Cells in a target tissue have receptor sites for specific hormones.  Receptor sites may be located on the surface of the cell membrane or in the interior of the cell.

 

In general those protein hormones are unable to diffuse through the cell membrane and react with receptor sites on the surface of the cell.  The hormone receptor reaction on the cell membrane activates an enzyme within the membrane, called adenyl cyclase, which diffuses into the cytoplasm.  Within the cell, adenyl cyclase catalyzes or starts the process of removal of phosphates from ATP to produce cyclic adenosine monophosphate or c AMP.  This c AMP activates enzymes within the cytoplasm that alter or change the cellular activity.  The protein hormone, which reacts at the cell membrane, is called the first messenger.  c Amp that brings about the action attributed to the hormone is called the second messenger.  This type of action is relatively rapid because the precursors are already present and they just needed to be activated in some way.  

Blood Transfusions

  • Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
  • Most were further fractionated into components, including:
    • RBCs. When refrigerated these can be used for up to 42 days.
    • platelets. These must be stored at room temperature and thus can be saved for only 5 days.
    • plasma. This can be frozen and stored for up to a year.

safety of donated blood

A variety of infectious agents can be present in blood.

  • viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
  • bacteria like the spirochete of syphilis
  • protozoans like the agents of malaria and babesiosis
  • prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)

and could be transmitted to recipients. To minimize these risks,

  • donors are questioned about their possible exposure to these agents;
  • each unit of blood is tested for a variety of infectious agents.

Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:

  • HIV-1
  • hepatitis C
  • West Nile virus
  • by the so-called nucleic acid-amplification test (NAT).

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

Cystic Fibrosis
→ Thick mucus coagulates in ducts, produces obstruction, Too thick for cilia to move
 
→ Major Systems Affected: Respiratory System, G. I. Tract,Reproductive Tract

→ Inherited, autosomal recessive gene, most common fatal genetic disorder

→    Major characteristic, Altered electrolyte composition (Saliva & sweat Na+, K+, Cl-)

→    Family history of Cystic Fibrosis
→    Respiratory Infections & G.I.Tract malabsorption
→    Predisposes lung to Secondary infection (Staphylococcus, Pseudomonas)
→    Damages Respiratory Bronchioles and Alveolar ducts, Produces Fibrosis of Lungs, Large cystic dilations)

4.    Emphysema
1. Permanent enlargement of airways with distension of alveolar walls
 
    Thickened Bronchial Submucosa, Edema & Cellular Infiltration (loss of elasticity), Dilation of Air spaces, due to destruction of alveolar walls (Air trapped by obstruction)

2.    Lower Respiratory tree destruction

    Respiratory Bronchioles, Alveolar ducts, & Alveolar sacs

Types of Emphysema:
    
    1.    Centrilobular (Centriacinar) = Respiratory Bronchioles
    Rarely seen in non Smokers, More in Men than Women, Found in Smokers with Bronchitis

    2.    Panlobular (Panacinar) 

    Hereditary, Single autosomal recessive gene. Deficient in 1-globulin (1-antitrypsin), Protects respiratory tract from neutrophil elastase (Enzyme that distroys lung connective tissue) , Aged persons, Results from Bronchi or Bronchiolar constriction

    NOTE: Smoking = Leading cause of Bronchitis, Emphysema
 

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Explore by Exams