Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Exchange of gases:

  • External respiration:
    • exchange of O2 & CO2 between external environment & the cells of the body
    • efficient because alveoli and capillaries have very thin walls & are very abundant (your lungs have about 300 million alveoli with a total surface area of about 75 square meters)
  • Internal respiration - intracellular use of O2 to make ATP
  • occurs by simple diffusion along partial pressure gradients

Concentration versus diluting urine 

Kidney is a major route for eliminating fluid from the body to accomplish water balance. Urine excretion is the last step in urine formation. Everyday both kidneys excrete about 1.5 liters of urine.
Depending on the hydrated status of the body, kidney either excretes concentrated urine ( if the plasma is hypertonic like in dehydrated status ) or diluted urine ( if the plasma is hypotonic) .
This occurs thankful to what is known as countercurrent multiplying system, which functions thankfully to establishing large vertical osmotic gradient .
To understand this system, lets review the following facts:
1. Descending limb of loop of Henle is avidly permeable to water.
2. Ascending limb of loop of Henly is permeable to electrolytes , but impermeable to water. So fluid will not folow electrolytes by osmosis.and thus Ascending limb creates hypertonic interstitium that will attract water from descending limb.
Pumping of electrolytes
3. So: There is a countercurrent flow produced by the close proximity of the two limbs.                   
                                                   
Juxtamedullary nephrons have long loop of Henle that dips deep in the medulla , so the counter-current system is more obvious and the medullary interstitium is always hypertonic . In addition, peritubular capillaries in the medulla are straigh ( vasa recta) in which flow is rapid and rapidly reabsorb water maintaining hypertonic medullary interstitium.

In distal tubules water is diluted. If plasma is hypertonic, this will lead to release of ADH by hypothalamus, which will cause reabsorption of water in collecting tubules and thus excrete concentrated urine.

If plasma is hypotonic ADH will be inhibited and the diluted urine in distal  tubules will be excreted as diluted urine.

Urea  contributes to concentrating and diluting of urine as follows:

Urea is totally filtered and then 50% of filtrated urea will be reabsorbed to the interstitium, this will increase the osmolarity of medullary interstitium ( becomes hypertonic ). Those 50% will be secreted in ascending limb of loop of Henle back to tubular fluid to maintain osmolarity of tubular fluid. 55% of urea in distal nephron will be reabsorbed in collecting ducts back to the interstitium ( under the effect of ADH too) . This urea cycle additionally maintain hypertonic interstitium.

AdenosineTriphosphate (ATP)

  • Animal cells cannot directly use most forms of energy
    • Most cellular processes require energy stored in the bonds of a molecule, adenosine triphosphate (ATP)
    • ATP is referred to as the energy currency of the cell

It is a nucleotide, formed from:

  • the base adenine (the structure with 2 rings),
  • the 5 carbon sugar deoxyribose (one ring)
  • 3 phosphates

Energy is stored in the bonds between the phosphates and is released when the bonds are broken

Tubular secretion:

Involves transfer of substances from peritubular capillaries into the tubular lumen. It  involves transepithelial transport in a direction opposite to that of tubular absorption.

Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.

Tubular secretion mostly function to eliminate foreign  organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.

K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)

K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:

- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.


Mechanism of secretion of K+ in principal cells : Two steps


- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.


Aldosterone is a necessary regulatory factor.

If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.        

CNS PROTECTION

 

- Bones of the Skull       Frontal, Temporal, Parietal, Sphenoid, Occipital

- Cranial Meninges         Dura mater, Arachnoid Space, Pia mater

- Cerebrospinal Fluid

Secreted by Chroid Plexi in Ventricles

Circulation through ventricles and central canal

Lateral and Median apertures from the 4th ventricle into the subarachnoid space

Arachnoid villi of the superior sagittal sinus return CSF to the venous circulation

Hydrocephalic Condition, blockage of the mesencephalic aqueduct, backup of CSF, Insertion of a shunt to drain the excess CSF

The Posterior Lobe

The posterior lobe of the pituitary releases two hormones, both synthesized in the hypothalamus, into the circulation.

  • Antidiuretic Hormone (ADH).
    ADH is a peptide of 9 amino acids. It is also known as arginine vasopressin. ADH acts on the collecting ducts of the kidney to facilitate the reabsorption of water into the blood.
    • A deficiency of ADH
      • leads to excessive loss of urine, a condition known as diabetes  nsipidus.
  • Oxytocin
    Oxytocin is a peptide of 9 amino acids. Its principal actions are:
    • stimulating contractions of the uterus at the time of birth
    • stimulating release of milk when the baby begins to suckle

A heart rate that is persistently greater than 100bpm is termed tachycardia. A heart rate that is persistantly lower than 60 pulse per min  is termed bradycardia. Let's examine some factors that could cause a change in heart rate:

  • Increased heart rate can be caused by:
    • Increased output of the cardioacceleratory center. In other words, greater activity of sympathetic nerves running to the heart and a greater release of norepinephrine on the heart.
    • Decreased output of the cardioinhibitory center. In other words, less vagus nerve activity and a decrease in the release of acetylcholine on the heart.
    • Increased release of the hormone epinephrine by the adrenal glands.
    • Nicotine.
    • Caffeine.
    • Hyperthyroidism - i.e., an overactive thyroid gland. This would lead to an increased amount of the hormone thyroxine in the blood.
  • Decreased heart rate can be caused by:
    • Decreased activity of the cardioacceleratory center.
    • Increased activity of the cardioinhibitory center.
    • Many others.

Explore by Exams