Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Urine is a waste byproduct formed from excess water and metabolic waste molecules during the process of renal system filtration. The primary function of the renal system is to regulate blood volume and plasma osmolarity, and waste removal via urine is essentially a convenient way that the body performs many functions using one process. Urine formation occurs during three processes:

Filtration

Reabsorption

Secretion

Filtration

During filtration, blood enters the afferent arteriole and flows into the glomerulus where filterable blood components, such as water and nitrogenous waste, will move towards the inside of the glomerulus, and nonfilterable components, such as cells and serum albumins, will exit via the efferent arteriole. These filterable components accumulate in the glomerulus to form the glomerular filtrate.

Normally, about 20% of the total blood pumped by the heart each minute will enter the kidneys to undergo filtration; this is called the filtration fraction. The remaining 80% of the blood flows through the rest of the body to facilitate tissue perfusion and gas exchange.

Reabsorption

 

The next step is reabsorption, during which molecules and ions will be reabsorbed into the circulatory system. The fluid passes through the components of the nephron (the proximal/distal convoluted tubules, loop of Henle, the collecting duct) as water and ions are removed as the fluid osmolarity (ion concentration) changes. In the collecting duct, secretion will occur before the fluid leaves the ureter in the form of urine.

Secretion

During secretion some substances±such as hydrogen ions, creatinine, and drugs—will be removed from the blood through the peritubular capillary network into the collecting duct. The end product of all these processes is urine, which is essentially a collection of substances that has not been reabsorbed during glomerular filtration or tubular reabsorbtion.

Tubular secretion:

Involves transfer of substances from peritubular capillaries into the tubular lumen. It  involves transepithelial transport in a direction opposite to that of tubular absorption.

Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.

Tubular secretion mostly function to eliminate foreign  organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.

K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)

K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:

- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.


Mechanism of secretion of K+ in principal cells : Two steps


- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.


Aldosterone is a necessary regulatory factor.

If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.        

 Pain, Temperature, and Crude Touch and Pressure

General somatic nociceptors, thermoreceptors, and mechanoreceptors sensitive to crude touch and pressure from the face conduct signals to the brainstem over GSA fibers of cranial nerves V, VII, IX, and X.

The afferent fibers involved are processes of monopolar neurons with cell bodies in the semilunar, geniculate, petrosal, and nodose ganglia, respectively.

The central processes of these neurons enter the spinal tract of V, where they descend through the brainstem for a short distance before terminating in the spinal nucleus of V.

Second-order neurons then cross over the opposite side of the brainstem at various levels to enter the ventral trigeminothalamic tract, where they ascend to the VPM of the thalamus.

Finally, third-order neurons project to the "face" area of the cerebral cortex in areas 3, 1, and 2 .

Discriminating Touch and Pressure

Signals are conducted from general somatic mechanoreceptors over GSA fibers of the trigeminal nerve into the principal sensory nucleus of V, located in the middle pons.

Second-order neurons then conduct the signals to the opposite side of the brainstem, where they ascend in the medial lemniscus to the VPM of the thalamus.

 Thalamic neurons then project to the "face" region of areas 3, I, and 2 of the cerebral cortex.

 Kinesthesia and Subconscious Proprioception

Proprioceptive input from the face is primarily conducted over GSA fibers of the trigeminal nerve.

The peripheral endings of these neurons are the general somatic mechanoreceptors sensitive to both conscious (kinesthetic) and subconscious proprioceptive input.

Their central processes extend from the mesencephalic nucleus to the principal sensory nucleus of V in the pons

The subconscious component is conducted to the cerebellum, while the conscious component travels to the cerebral cortex.

Certain second-order neurons from the principal sensory nucleus relay proprioceptive information concerning subconscious evaluation and integration into the ipsilateral cerebellum.

Other second-order neurons project to the opposite side of the pons and ascend to the VPM of the thalamus as the dorsal trigeminothalamic tract.

Thalamic projections terminate in the face area of the cerebral cortex.

DNA (Deoxyribonucleic acid) - controls cell function via transcription and translation (in other words, by controlling protein synthesis in a cell)

Transcription - DNA is used to produce mRNA

Translation - mRNA then moves from the nucleus into the cytoplasm & is used to produce a protein . requires mRNA, tRNA (transfer RNA), amino acids, & a ribosome


tRNA molecule

  • sequence of amino acids in a protein is determined by sequence of codons (mRNA). Codons are 'read' by anticodons of tRNAs & tRNAs then 'deliver' their amino acid.
  • Amino acids are linked together by peptide bonds (see diagram to the right)
  • As mRNA slides through ribosome, codons are exposed in sequence & appropriate amino acids are delivered by tRNAs. The protein (or polypeptide) thus grows in length as more amino acids are delivered.
  • The polypeptide chain then 'folds' in various ways to form a complex three-dimensional protein molecule that will serve either as a structural protein or an enzyme.

Serum Lipids

 

LIPID

Typical values (mg/dl)

Desirable (mg/dl)

Cholesterol (total)

170–210

<200

LDL cholesterol

60–140

<100

HDL cholesterol

35–85

>40

Triglycerides

40–160

<160

 

  • Total cholesterol is the sum of
    • HDL cholesterol
    • LDL cholesterol and
    • 20% of the triglyceride value
  • Note that
    • high LDL values are bad, but
    • high HDL values are good.
  • Using the various values, one can calculate a
    cardiac risk ratio = total cholesterol divided by HDL cholesterol
  • A cardiac risk ratio greater than 7 is considered a warning.

Cell, or Plasma, membrane

  • Structure - 2 primary building blocks include

protein (about 60% of the membrane) and lipid, or

fat (about 40% of the membrane).

The primary lipid is called phospholipids, and molecules of phospholipid form a 'phospholipid bilayer' (two layers of phospholipid molecules). This bilayer forms because the two 'ends' of phospholipid molecules have very different characteristics: one end is polar (or hydrophilic) and one (the hydrocarbon tails below) is non-polar (or hydrophobic):

  • Functions include:
    • supporting and retaining the cytoplasm
    • being a selective barrier .
    • transport
    • communication (via receptors)

Physiology - science that describes how organisms FUNCTION and survive in continually changing environments  

Explore by Exams