NEET MDS Lessons
Physiology
The cell membrane is called the sarcolemma. This membrane is structured to receive and conduct stimuli. The sarcoplasm of the cell is filled with contractile myofibrils and this results in the nuclei and other organelles being relegated to the edge of the cell.
Myofibrils are contractile units within the cell which consist of a regular array of protein myofilaments. Each myofilament runs longitudinally with respect to the muscle fiber. There are two types: the thick bands and the thin bands. Thick bands are made of multiple molecules of a protein called myosin. The thin bands are made of multiple molecules of a protein called actin. The thin actin bands are attached to a Z-line or Z-disk of an elastic protein called titin. The titin protein also extends into the myofibril anchoring the other bands in position. From each Z-line to the next is a unit called the
The sarcomere is the smallest contractile unit in the myofibril. Sarcomeres contract because the Z-lines move closer together. As the sarcomeres contract the myofibrils contract. As the myofibrils contract the muscle cell contracts. And as the cells contract the entire muscle contracts.
The arrangement of the thick myosin filaments across the myofibrils and the cell causes them to refract light and produce a dark band known as the A Band. In between the A bands is a light area where there are no thick myofilaments, only thin actin filaments. These are called the I Bands. The dark bands are the striations seen with the light microscope.
Typical Concentration Gradients and Membrane Potentials in Excitable Cells
The Na Pump is Particularly Important in the Kidney and Brain
- All cells have Na pumps in their membranes, but some cells have more than others
- Over-all Na pump activity may account for a third of your resting energy expenditure!
- In the kidney the Na pump activity is very high because it is used to regulate body salt and water concentrations
- Kidneys use enormous amounts of energy: 0.5% of body weight, but use 7% of the oxygen supply
- Pump activity is also high in the brain because Na and K gradients are essential for nerves
- The brain is another high energy organ; it is 2% of body weight, but uses 18% of the oxygen supply
In the Resting State Potassium Controls the Membrane Potential of Most Cells
- Resting cells have more open K channels than other types
- More K+ passes through membrane than other ions- therefore K+ controls the potential
- Blood K+ must be closely controlled because small changes will produce large changes in the membrane potentials of cells
- Raising K will make the membrane potential less negative (depolarization)
- High blood K+ can cause the heart to stop beating (it goes into permanent contraction)
During an Action Potential Na Channels Open, and Na Controls the Membrane Potential
- Whichever ion has the most open channels controls the membrane potential
- Excitable cells have Na channels that open when stimulated
- When large numbers of these channels open Na controls the membrane potential
HEART DISORDERS
- Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
- Renin release (Juxtaglomerular cells) Kidney
- Converts Angiotensinogen => Angiotensin I
- In lungs Angiotensin I Converted => Angiotensin II
- Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
- stimulates thirst
- stimulates adrenal cortex to release Aldosterone
(Sodium retention, potassium loss) - stimulates kidney directly to reabsorb Sodium
- releases ADH from Posterior Pituitary
- Myocardial Infarction
- Myocardial Cells die from lack of Oxygen
- Adjacent vessels (collateral) dilate to compensate
- Intracellular Enzymes leak from dying cells (Necrosis)
- Creatine Kinase CK (Creatine Phosphokinase) 3 forms
- One isoenzyme = exclusively Heart (MB)
- CK-MB blood levels found 2-5 hrs, peak in 24 hrs
- Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
- Serum glutamic oxaloacetic transaminase (SGOT)
- Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
- SGOT returns to normal after 3-4 days
- Creatine Kinase CK (Creatine Phosphokinase) 3 forms
- Myocardium weakens = Decreased CO & SV (severe - death)
- Infarct heal by fibrous repair
- Hypertrophy of undamaged myocardial cells
- Increased contractility to restore normal CO
- Improved by exercise program
- Prognosis
- 10% uncomplicated recovery
- 20% Suddenly fatal
- Rest MI not fatal immediately, 15% will die from related causes
- Congenital heart disease (Affect oxygenation of blood)
- Septal defects
- Ductus arteriosus
- Valvular heart disease
- Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
- Regurgitation = cusps, retracted, Do not close, blood moves backwards
The Posterior Lobe
The posterior lobe of the pituitary releases two hormones, both synthesized in the hypothalamus, into the circulation.
- Antidiuretic Hormone (ADH).
ADH is a peptide of 9 amino acids. It is also known as arginine vasopressin. ADH acts on the collecting ducts of the kidney to facilitate the reabsorption of water into the blood.- A deficiency of ADH
- leads to excessive loss of urine, a condition known as diabetes nsipidus.
- A deficiency of ADH
- Oxytocin
Oxytocin is a peptide of 9 amino acids. Its principal actions are:- stimulating contractions of the uterus at the time of birth
- stimulating release of milk when the baby begins to suckle
The bulk of the pancreas is an exocrine gland secreting pancreatic fluid into the duodenum after a meal. However, scattered through the pancreas are several hundred thousand clusters of cells called islets of Langerhans. The islets are endocrine tissue containing four types of cells. In order of abundance, they are the:
- beta cells, which secrete insulin and amylin;
- alpha cells, which secrete glucagon;
- delta cells, which secrete somatostatin, and
- gamma cells, which secrete a polypeptide of unknown function.
Beta Cells
Beta cells secrete insulin in response to a rising level of blood sugar
Insulin affects many organs. It
- stimulates skeletal muscle fibers to
- take up glucose and convert it into glycogen;
- take up amino acids from the blood and convert them into protein.
- acts on liver cells
- stimulating them to take up glucose from the blood and convert it into glycogen while
- inhibiting production of the enzymes involved in breaking glycogen back down (glycogenolysis) and
- inhibiting gluconeogenesis; that is, the conversion of fats and proteins into glucose.
- acts on fat (adipose) cells to stimulate the uptake of glucose and the synthesis of fat.
- acts on cells in the hypothalamus to reduce appetite.
Diabetes Mellitus
Diabetes mellitus is an endocrine disorder characterized by many signs and symptoms. Primary among these are:
- a failure of the kidney to retain glucose .
- a resulting increase in the volume of urine because of the osmotic effect of this glucose (it reduces the return of water to the blood).
There are three categories of diabetes mellitus:
- Insulin-Dependent Diabetes Mellitus (IDDM) (Type 1) and
- Non Insulin-Dependent Diabetes Mellitus (NIDDM)(Type 2)
- Inherited Forms of Diabetes Mellitus
Insulin-Dependent Diabetes Mellitus (IDDM)
IDDM ( Type 1 diabetes)
- is characterized by little or no circulating insulin;
- most commonly appears in childhood.
- It results from destruction of the beta cells of the islets.
- The destruction results from a cell-mediated autoimmune attack against the beta cells.
- What triggers this attack is still a mystery, although a prior viral infection may be the culprit.
Non Insulin-Dependent Diabetes Mellitus (NIDDM)
Many people develop diabetes mellitus without an accompanying drop in insulin levels In many cases, the problem appears to be a failure to express a sufficient number of glucose transporters in the plasma membrane (and T-system) of their skeletal muscles. Normally when insulin binds to its receptor on the cell surface, it initiates a chain of events that leads to the insertion in the plasma membrane of increased numbers of a transmembrane glucose transporter. This transporter forms a channel that permits the facilitated diffusion of glucose into the cell. Skeletal muscle is the major "sink" for removing excess glucose from the blood (and converting it into glycogen). In NIDDM, the patient's ability to remove glucose from the blood and convert it into glycogen is reduced. This is called insulin resistance. NIDDM (also called Type 2 diabetes mellitus) usually occurs in adults and, particularly often, in overweight people.
Alpha Cells
The alpha cells of the islets secrete glucagon, a polypeptide of 29 amino acids. Glucagon acts principally on the liver where it stimulates the conversion of glycogen into glucose (glycogenolysis) which is deposited in the blood.
Glucagon secretion is
- stimulated by low levels of glucose in the blood;
- inhibited by high levels, and
- inhibited by amylin.
The physiological significance of this is that glucagon functions to maintain a steady level of blood sugar level between meals.
Delta Cells
The delta cells secrete somatostatin. Somatostatin has a variety of functions. Taken together, they work to reduce the rate at which food is absorbed from the contents of the intestine. Somatostatin is also secreted by the hypothalamus and by the intestine.
Gamma Cells
The gamma cells of the islets secrete pancreatic polypeptide. No function has yet been found for this peptide of 36 amino acids.
Clinical Physiology
Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .
To understand the pathophysiology of the heart failure , lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume
Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .
Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .
Contractility : Reducing the power of contraction such as in myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .
Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.
Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff .
The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .
Tubular secretion:
Involves transfer of substances from peritubular capillaries into the tubular lumen. It involves transepithelial transport in a direction opposite to that of tubular absorption.
Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.
Tubular secretion mostly function to eliminate foreign organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.
K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)
K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:
- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.
Mechanism of secretion of K+ in principal cells : Two steps
- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.
Aldosterone is a necessary regulatory factor.
If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.