Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

A small fraction of cardiac muscle fibers have myogenicity and autorhythmicity.

Myogenicity is the property of spontaneous impulse generation. The slow sodium channels are leaky and cause the polarity to spontaneously rise to threshold for action potential generation. The fastest of these cells, those in the SA node, set the pace for the heartbeat.

Autorhythmicity - the natural rhythm of spontaneous depolarization. Those with the fastest autorhythmicity act as the 1. heart's pacemaker.

Contractility - like skeletal muscle, most cardiac muscle cells respond to stimuli by contracting. The autorhythmic cells have very little contractility however. Contractility in the other cells can be varied by the effect of neurotransmitters.

Inotropic effects - factors which affect the force or energy of muscular contractions. Digoxin, epinephrine, norepinephrine, and dopamine have positive inotropic effects. Betal blockers and calcium channel blockers have negative inotropic effects 

Sequence of events in cardiac conduction: The electrical events in the cardiac cycle.

1) SA node depolarizes and the impulse spreads across the atrial myocardium and through the internodal fibers to the AV node. The atrial myocardium depolarizes resulting in atrial contraction, a physical event.

2) AV node picks up the impulse and transfers it to the AV Bundle (Bundle of His). This produces the major portion of the delay seen in the cardiac cycle. It takes approximately .03 sec from SA node depolarization to the impulse reaching the AV node, and .13 seconds for the impulse to get through the AV node and reach the Bundle of His. Also during this period the atria repolarize.

3) From the AV node the impulse travels through the bundle branches and through the Purkinje fibers to the ventricular myocardium, causing ventricular depolarization and ventricular contraction, a physical event.

4) Ventricular repolarization occurs.

The large intestine (colon)

The large intestine receives the liquid residue after digestion and absorption are complete. This residue consists mostly of water as well as materials (e.g. cellulose) that were not digested. It nourishes a large population of bacteria (the contents of the small intestine are normally sterile). Most of these bacteria (of which one common species is E. coli) are harmless. And some are actually helpful, for example, by synthesizing vitamin K. Bacteria flourish to such an extent that as much as 50% of the dry weight of the feces may consist of bacterial cells. Reabsorption of water is the chief function of the large intestine. The large amounts of water secreted into the stomach and small intestine by the various digestive glands must be reclaimed to avoid dehydration.

Functions of the nervous system:

1) Integration of body processes

2) Control of voluntary effectors (skeletal muscles), and mediation of voluntary reflexes.

3) Control of involuntary effectors (  smooth muscle, cardiac muscle, glands) and mediation of autonomic reflexes (heart rate, blood pressure, glandular secretion, etc.)

4) Response to stimuli

5) Responsible for conscious thought and perception, emotions, personality, the mind.

The Sliding Filament mechanism of muscle contraction.

When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens

 

The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.

It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together

 

Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex. 

The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.

Glomerular filtration

Kidneys receive about 20% of cardiac output , this is called Renal Blood Flow (RBF) which is approximatley 1.1 L of blood. Plasma in this flow is about 625 ml . It is called Renal Plasma Flow (RPF) .
About 20 % of Plasma entering the glomerular capillaries is filtered into the Bowman`s capsule .
Glomerular filtration rate is about 125 ml/min ( which means 7.5 L/hr and thus 180 L/day) This means that the kidney filters about 180 liters of plasma every day.

The urine flow is about 1ml/min ( about 1.5 liter /day) This means that kidney reabsorbs about 178.5 liters every day .

Filtration occurs through the filtration unit , which includes :

1- endothelial cells of glomerular capillaries , which are fenestrated . Fenestrae are quite small so they prevent filtration of blood cells and most of plasma proteins .

2- Glomerular basement membrane : contains proteoglycan that is negatively charged and repels the negatively charged plasma proteins that may pass the fenestrae due to their small molecular weight like albumin . so the membrane plays an important role in impairing filtration of albumin .

3- Epithelial cells of Bowman`s capsule that have podocytes , which interdigitate to form slits .


Many forces drive the glomerular filtration , which are :

1- Hydrostatic pressure of the capillary blood , which favours filtration . It is about 55 mmHg .

2- Oncotic pressure of the plasma proteins in the glomerular capillary ( opposes filtration ) . It is about 30 mm Hg .

3- Hydrostatic pressure of the Bowman`s capsule , which also opposes filtration. It is about 15 mmHg .

The net pressure is as follows :

Hydrostatic pressure of glomerular capillaries - ( Oncotic pressure of glomerular capillaries + Hydrostatic pressure of the Bowman capsule):
55-(35+10)
=55-45
=10 mmHg .

Te glomerular filtration rate does not depend only on the net pressure , but also on an other value , known as filtration coefficient ( Kf) . The later depends on the surface area of the glomerular capillaries and the hydraulic conductivity of the glomerular capillaries.
 

Respiratory system plays important role in maintaining homeostasis . Other than its major function , which is supplying the cells with needed oxygen to produce energy and getting rid of carbon dioxide , it has other functions :

1 Vocalization , or sound production.
2 Participation in acid base balance .
3 Participation in fluid balance by insensible water elimination (vapors ).
4 Facilitating venous return .
5 Participation in blood pressure regulation : Lungs produce Angiotensin converting enzyme ( ACE ) .
6 Immune function : Lungs produce mucous that trap foreign particles , and have ciliae that move foreign particles away from the lung. They also produce alpha 1 antitrepsin that protect the lungs themselves from the effect of elastase and other proteolytic  enzymes

The hypothalamus is a region of the brain. It secretes a number of hormones.

  • Thyrotropin-releasing hormone (TRH)
  • Gonadotropin-releasing hormone (GnRH)
  • Growth hormone-releasing hormone (GHRH)
  • Corticotropin-releasing hormone (CRH)
  • Somatostatin
  • Dopamine

All of these are released into the blood, travel immediately to the anterior lobe of the pituitary, where they exert their effects.

Two other hypothalamic hormones:

  • Antidiuretic hormone (ADH) and
  • Oxytocin

travel in neurons to the posterior lobe of the pituitary where they are released into the circulation.

Explore by Exams