NEET MDS Lessons
Physiology
Graded Contractions and Muscle Metabolism
The muscle twitch is a single response to a single stimulus. Muscle twitches vary in length according to the type of muscle cells involved. .
Fast twitch muscles such as those which move the eyeball have twitches which reach maximum contraction in 3 to 5 ms (milliseconds). [superior eye] and [lateral eye] These muscles were mentioned earlier as also having small numbers of cells in their motor units for precise control.
The cells in slow twitch muscles like the postural muscles (e.g. back muscles, soleus) have twitches which reach maximum tension in 40 ms or so.
The muscles which exhibit most of our body movements have intermediate twitch lengths of 10 to 20 ms.
The latent period, the period of a few ms encompassing the chemical and physical events preceding actual contraction.
This is not the same as the absolute refractory period, the even briefer period when the sarcolemma is depolarized and cannot be stimulated. The relative refractory period occurs after this when the sarcolemma is briefly hyperpolarized and requires a greater than normal stimulus
Following the latent period is the contraction phase in which the shortening of the sarcomeres and cells occurs. Then comes the relaxation phase, a longer period because it is passive, the result of recoil due to the series elastic elements of the muscle.
We do not use the muscle twitch as part of our normal muscle responses. Instead we use graded contractions, contractions of whole muscles which can vary in terms of their strength and degree of contraction. In fact, even relaxed muscles are constantly being stimulated to produce muscle tone, the minimal graded contraction possible.
Muscles exhibit graded contractions in two ways:
1) Quantal Summation or Recruitment - this refers to increasing the number of cells contracting. This is done experimentally by increasing the voltage used to stimulate a muscle, thus reaching the thresholds of more and more cells. In the human body quantal summation is accomplished by the nervous system, stimulating increasing numbers of cells or motor units to increase the force of contraction.
2) Wave Summation ( frequency summation) and Tetanization- this results from stimulating a muscle cell before it has relaxed from a previous stimulus. This is possible because the contraction and relaxation phases are much longer than the refractory period. This causes the contractions to build on one another producing a wave pattern or, if the stimuli are high frequency, a sustained contraction called tetany or tetanus. (The term tetanus is also used for an illness caused by a bacterial toxin which causes contracture of the skeletal muscles.) This form of tetanus is perfectly normal and in fact is the way you maintain a sustained contraction.
Treppe is not a way muscles exhibit graded contractions. It is a warmup phenomenon in which when muscle cells are initially stimulated when cold, they will exhibit gradually increasing responses until they have warmed up. The phenomenon is due to the increasing efficiency of the ion gates as they are repeatedly stimulated. Treppe can be differentiated from quantal summation because the strength of stimulus remains the same in treppe, but increases in quantal summation
Length-Tension Relationship: Another way in which the tension of a muscle can vary is due to the length-tension relationship. This relationship expresses the characteristic that within about 10% the resting length of the muscle, the tension the muscle exerts is maximum. At lengths above or below this optimum length the tension decreases.
Cells, cytoplasm, and organelles:
- Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles
- Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed)
- Organelles include:
- Endoplasmic reticulum : 2 forms: smooth and rough; the surface of rough ER is coated with ribosomes; the surface of smooth ER is not , Functions include: mechanical support, synthesis (especially proteins by rough ER), and transport
- Golgi complex consists of a series of flattened sacs (or cisternae) functions include: synthesis (of substances likes phospholipids), packaging of materials for transport (in vesicles), and production of lysosomes
- Lysosome : membrane-enclosed spheres that contain powerful digestive enzymes , functions include destruction of damaged cells & digestion of phagocytosed materials
- Mitochondria : have double-membrane: outer membrane & highly convoluted inner membrane
- inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production
- primary function is production of adenosine triphosphate (ATP)
- Ribosome-:composed of rRNA (ribosomal RNA) & protein , primary function is to produce proteins
- Centrioles :paired cylindrical structures located near the nucleas , play an important role in cell division
- Flagella & cilia - hair-like projections from some human cells
- cilia are relatively short & numerous (e.g., those lining trachea)
- a flagellum is relatively long and there's typically just one (e.g., sperm)
-
- Villi Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine)
Acute Obstructive Disorders
1. Heimlich maneuver
2. Bypass, tracheostomy w/catheter to suck up secretion
Cardiac Output:
Minute Volume = Heart Rate X Stroke Volume
Heart rate, HR at rest = 65 to 85 bpm
Each heartbeat at rest takes about .8 sec. of which .4 sec. is quiescent period.
Stroke volume, SV at rest = 60 to 70 ml.
Heart can increase both rate and volume with exercise. Rate increase is limited due to necessity of minimum ventricular diastolic period for filling. Upper limit is usually put at about 220 bpm. Maximum heart rate calculations are usually below 200. Target heart rates for anaerobic threshold are about 85 to 95% of maximum.
Terms:
End Diastolic Volume, EDV - the maximum volume of the ventricles achieved at the end of ventricular diastole. This is the amount of blood the heart has available to pump. If this volume increases the cardiac output increases in a healthy heart.
End Systolic Volume, ESV - the minimum volume remaining in the ventricle after its systole. If this volume increases it means less blood has been pumped and the cardiac output is less.
EDV - ESV = SV
SV / EDV = Ejection Fraction The ejection fraction is normally around 50% at rest and will increase during strenuous exercise in a healthy heart. Well trained athletes may have ejection fractions approaching 70% in the most strenuous exercise.
Isovolumetric Contraction Phase - a brief period at the beginning of ventricular systole when all valves are closed and ventricular volume remains constant. Pressure has risen enough in the ventricle to close the AV valves but not enough to open the semilunar valves and cause ejection of blood.
Isovolumetric Relaxation Phase - a brief period at the beginning of ventricular diastole when all valves are closed and ventricular volume is constant. Pressure in the ventricle has lowered producing closure of the semilunar valves but not opening the AV valves to begin pulling blood into the ventricle.
Dicrotic Notch - the small increase in pressure of the aorta or other artery seen when recording a pulse wave. This occurs as blood is briefly pulled back toward the ventricle at the beginning of diastole thus closing the semilunar valves.
Preload - This is the pressure at the end of ventricular diastole, at the beginning of ventricular systole. It is proportional to the End Diastolic Volume (EDV), i.e. as the EDV increases so does the preload of the heart. Factors which increase the preload are: increased total blood volume, increased venous tone and venous return, increased atrial contraction, and the skeletal muscular pump.
Afterload - This is the impedence against which the left ventricle must eject blood, and it is roughly proportional to the End Systolic Volume (ESV). When the peripheral resistance increases so does the ESV and the afterload of the heart.
The importance of these parameters are as a measure of efficiency of the heart, which increases as the difference between preload and afterload increases
The Sliding Filament mechanism of muscle contraction.
When a muscle contracts the light I bands disappear and the dark A bands move closer together. This is due to the sliding of the actin and myosin myofilaments against one another. The Z-lines pull together and the sarcomere shortens
The thick myosin bands are not single myosin proteins but are made of multiple myosin molecules. Each myosin molecule is composed of two parts: the globular "head" and the elongated "tail". They are arranged to form the thick bands.
It is the myosin heads which form crossbridges that attach to binding sites on the actin molecules and then swivel to bring the Z-lines together
Likewise the thin bands are not single actin molecules. Actin is composed of globular proteins (G actin units) arranged to form a double coil (double alpha helix) which produces the thin filament. Each thin myofilament is wrapped by a tropomyosin protein, which in turn is connected to the troponin complex.
The tropomyosin-troponin combination blocks the active sites on the actin molecules preventing crossbridge formation. The troponin complex consists of three components: TnT, the part which attaches to tropomyosin, TnI, an inhibitory portion which attaches to actin, and TnC which binds calcium ions. When excess calcium ions are released they bind to the TnC causing the troponin-tropomyosin complex to move, releasing the blockage on the active sites. As soon as this happens the myosin heads bind to these active sites.
The pituitary gland is pea-sized structure located at the base of the brain. In humans, it consists of two lobes:
- the Anterior Lobe and
- the Posterior Lobe
The Anterior Lobe
The anterior lobe contains six types of secretory cells All of them secrete their hormone in response to hormones reaching them from the hypothalamus of the brain.
Thyroid Stimulating Hormone (TSH)
TSH (also known as thyrotropin) is a glycoprotein The secretion of TSH is
- stimulated by the arrival of thyrotropin releasing hormone (TRH) from the hypothalamus.
- inhibited by the arrival of somatostatin from the hypothalamus.
TSH stimulates the thyroid gland to secrete its hormone thyroxine (T4).
Some develop antibodies against their own TSH receptors making more T4 causing hyperthyroidism. The condition is called thyrotoxicosis or Graves' disease.
Hormone deficiencies
A deficiency of TSH causes hypothyroidism: inadequate levels of T4 (and thus of T3 )..
Follicle-Stimulating Hormone (FSH)
FSH is a heterodimeric glycoprotein Synthesis and release of FSH is triggered by the arrival from the hypothalamus of gonadotropin-releasing hormone (GnRH).
FSH in females :In sexually-mature females, FSH (assisted by LH) acts on the follicle to stimulate it to release estrogens.
FSH in males :In mature males, FSH acts on spermatogonia stimulating (with the aid of testosterone) the production of sperm.
Luteinizing Hormone (LH)
LH is synthesized within the same pituitary cells as FSH and under the same stimulus (GnRH). It is also a heterodimeric glycoprotein
LH in females
In sexually-mature females, LH
- stimulates the follicle to secrete estrogen in the first half of the menstrual cycle
- a surge of LH triggers the completion of meiosis I of the egg and its release (ovulation) in the middle of the cycle
- stimulates the now-empty follicle to develop into the corpus luteum, which secretes progesterone during the latter half of the menstrual cycle.
LH in males
LH acts on the interstitial cells (also known as Leydig cells) of the testes stimulating them to synthesize and secrete the male sex hormone, testosterone.
LH in males is also known as interstitial cell stimulating hormone (ICSH).
Prolactin (PRL)
Prolactin is a protein of 198 amino acids. During pregnancy it helps in the preparation of the breasts for future milk production. After birth, prolactin promotes the synthesis of milk.
Prolactin secretion is
- stimulated by TRH
- repressed by estrogens and dopamine.
Growth Hormone (GH)
- Human growth hormone (also called somatotropin) is a protein
- The GH-secreting cells are stimulated to synthesize and release GH by the intermittent arrival of growth hormone releasing hormone (GHRH) from the hypothalamus. GH promotes body growth
In Child
- hyposecretion of GH produces dwarfism
- hypersecretion leads to gigantism
In adults, a hypersecretion of GH leads to acromegaly.
ACTH — the adrenocorticotropic hormone
ACTH acts on the cells of the adrenal cortex, stimulating them to produce
- glucocorticoids, like cortisol
- mineralocorticoids, like aldosterone
- androgens (male sex hormones, like testosterone
Hypersecretion of ACTH cause of Cushing's disease.
Bile contains:
- bile acids. These amphiphilic steroids emulsify ingested fat. The hydrophobic portion of the steroid dissolves in the fat while the negatively-charged side chain interacts with water molecules. The mutual repulsion of these negatively-charged droplets keeps them from coalescing. Thus large globules of fat (liquid at body temperature) are emulsified into tiny droplets (about 1 µm in diameter) that can be more easily digested and absorbed.
- bile pigments. These are the products of the breakdown of hemoglobin removed by the liver from old red blood cells. The brownish color of the bile pigments imparts the characteristic brown color of the feces.