Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Functions of the nervous system:

1) Integration of body processes

2) Control of voluntary effectors (skeletal muscles), and mediation of voluntary reflexes.

3) Control of involuntary effectors (  smooth muscle, cardiac muscle, glands) and mediation of autonomic reflexes (heart rate, blood pressure, glandular secretion, etc.)

4) Response to stimuli

5) Responsible for conscious thought and perception, emotions, personality, the mind.

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

PHYSIOLOGY OF THE BRAIN

  • The Cerebrum (Telencephalon) Lobes of the cerebral cortex

     

    1. Frontal Lobe
      1. Precentral gyrus, Primary Motor Cortex, point to point motor neurons, pyramidal cells: control motor neurons of the brain and spinal cord. See Motor homunculus
      2. Secondary Motor Cortex repetitive patterns
      3. Broca's Motor Speech area
      4. Anterior - abstract thought, planning, decision making, Personality
    2. Parietal Lobe
      1. Post central gyrus, Sensory cortex, See Sensory homunculus, size proportional to sensory receptor density.
      2. Sensory Association area, memory of sensations
    3. Occipital Lobe
      1. Visual cortex, sight (conscious perception of vision)
      2. Visual Association area, correlates visual images with previous images, (memory of vision, )
    4. Temporal Lobe
      1. Auditory Cortex, sound
      2. Auditory Association area, memory of sounds
    5. Common Integratory Center - angular gyrus, Parietal, Temporal & Occipital lobes
      1. One side becomes dominent, integrats sensory (somesthetic, auditory, visual) information
    6. The Basal nuclei (ganglia)
      1. Grey matter (cell bodies) within the White matter of cerebrum, control voluntary movements
    7. Cauadate nucles - chorea (rapi, uncontrolled movements), Parkinsons: (dopamine neurons of substantia nigra to caudate nucles) jerky movements, spasticity, tremor, blank facial expression
    8. The limbic system - ring around the brain stem, emotions(w/hypothalamus), processing of olfactory information

 

  • The Diencephalon

     

    1. The Thalamus - Sensory relay center to cortex (primitive brain!)
    2. The Hypothalamus
      1. core temperature control"thermostat", shivering and nonshivering thermogenesis
      2. hunger & satiety centers, wakefulness, sleep, sexual arousal,
      3. emotions (w/limbic-anger, fear, pain, pleasure), osmoregulation, (ADH secretion),
      4. Secretion of ADH, Oxytocin, Releasing Hormones for Anterior pitutary
      5. Linkage of nervous and endocrine systems

 

  • The Mesencephalon or Midbrain -

     

    1. red nucleus, motor coordination (cerebellum/Motor cortex),
    2. substantia nigra
  • The Metencephalon
    1. The Cerebellum -
      1. Performs automatic adjustments in complex motor activities
      2. Input from Proprioceptors (joint, tendon, muscles), position of body in Space
        1. Motor cortex, intended movements (changes in position of body in Space)
      3. Damping (breaking motor function), Balance, predicting, inhibitory function of Purkinji cells (GABA), speed, force, direction of movement
    2. The Pons - Respiratory control centers (apneustic, pneumotaxic)
      1. Nuclei of cranial nerves V, VI, VII, VIII

 

  • Myelencephalon

     

    1. The Medulla
      1. Visceral motor centers (vasomotor, cardioinhibtory, respiratory)
      2. Reticular Formation RAS system, alert cortex to incoming signals, maintenance of consciousness, arousal from sleep
      3. All Afferent & Efferent fibers pass through, crossing over of motor tracts
    2. Corpus Callosum: Permits communication between cerebralhemispheres
  • Generalized Brain Avtivity
    1. Brain Activity and the Electroencephalogram(EEG)
      1. alpha waves: resting adults whose eyes are closed
      2. beta waves: adults concentrating on a specific task;
      3. theta waves: adults under stress;
      4. delta waves: during deep sleep and in clinical disorders
    2. Brain Seizures
      1. Grand Mal: generalized seizures, involvs gross motor activity, affects the individual for a matter or hours
      2. Petit mal: brief incidents, affect consciousness but may have no obvious motor abnormalities
    3. Chemical Effects on the Brain
      1. Sedatives: reduce CNS activity
      2. Analgesics: relieve pain by affecting pain pathways or peripheral sensations
      3. Psychotropics: alter mood and emotional states
      4. Anticonvulsants: control seizures
      5. Stimulants: facilitate CNS activity
    4. Memory and learning
      1. Short-term, or primary, memories last a short time, immediately accessible (phone number)
      2. Secondary memories fade with time (your address at age 5)
      3. Tertiary memories last a lifetime (your name)
      4. Memories are stored within specific regions of the cerebral cortex.
      5. Learning, a more complex process involving the integration of memories and their use to direct or modify behaviors
      6. Neural basis for memory and learning has yet to be determined.
  • Fibers in CNS
    1. Association fibers: link portions of the cerebrum;
    2. Commissural fibers: link the two hemispheres;
    3. Projection fibers: link the cerebrum to the brain stem

COPD and Cancer

A.    Chronic Obstructive Pulmonary Disease (COPD)

1.    Common features of COPD

a.    almost all have smoking history
b.    dyspnea - chronic "gasping" for air
c.    frequent coughing and infections
d.    often leads to respiratory failure

2.    obstructive emphysema - usually results from smoking

a.    enlargement & deterioration of alveoli
b.    loss of elasticity of the lungs
c.    "barrel chest" from bronchiole opening during inhalation & constriction during exhalation

3.    chronic bronchitis - mucus/inflammation of mucosa

B.    Lung Cancer

1.    squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2.    adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3.    small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4.    90% of all lung cancers are in people who smoke or have smoked 
 

Bleeding Disorders

A deficiency of a clotting factor can lead to uncontrolled bleeding.

The deficiency may arise because

  • not enough of the factor is produced or
  • a mutant version of the factor fails to perform properly.

Examples:

  • von Willebrand disease (the most common)
  • hemophilia A for factor 8 deficiency
  • hemophilia B for factor 9 deficiency.
  • hemophilia C for factor 11 deficiency

In some cases of von Willebrand disease, either a deficient level or a mutant version of the factor eliminates its protective effect on factor 8. The resulting low level of factor 8 mimics hemophilia A.

The defecation reflex:

As a result of the mass movements, pressure is exerted on the rectum and on the internal anal sphincter, which is smooth muscle, resulting in its involuntary relaxation. Afferent impulses are sent to the brain indicating the need to defecate. The external sphincter is voluntary muscle and is controlled by the voluntary nervous system. This sphincter is relaxed along with contraction of the rectal and abdominal muscles in the defecation reflex

As the contents of the stomach become thoroughly liquefied, they pass into the duodenum, the first segment  of the small intestine. The duodenum is the first 10" of the small intestine

Two ducts enter the duodenum:

  • one draining the gall bladder and hence the liver
  • the other draining the exocrine portion of the pancreas.

From the intestinal mucosal cells, and from the liver and gallbladder. Secretions from the pancreas and bile from the gallbladder enter the duodenum through the hepatopancreatic ampulla and the sphincter of Oddi. These lie where the pancreatic duct and common bile duct join before entering the duodenum. The presence of fatty chyme in the duodenum causes release of the hormone CCK into the bloodstream. CCK is one of the enterogastrones and its main function, besides inhibiting the stomach, is to stimulate the release of enzymes by the pancreas, and the contraction of the gallbladder to release bile. It also stimulates the liver to produce bile. Consumption of excess fat results in excessive bile production by the liver, and this can lead to the formation of gallstones from precipitation of the bile salts. 

The acid in the chyme stimulates the release of secretin which causes the pancreas to release bicarbonate which neutralizes the acidity

Explore by Exams