Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Plasma:  is the straw-colored liquid in which the blood cells are suspended.

Composition of blood plasma

Component

Percent

Water

~92

Proteins

6–8

Salts

0.8

Lipids

0.6

Glucose (blood sugar)

0.1

Plasma transports materials needed by cells and materials that must be removed from cells:

  • various ions (Na+, Ca2+, HCO3, etc.
  • glucose and traces of other sugars
  • amino acids
  • other organic acids
  • cholesterol and other lipids
  • hormones
  • urea and other wastes

Most of these materials are in transit from a place where they are added to the blood

  • exchange organs like the intestine
  • depots of materials like the liver

to places where they will be removed from the blood.

  • every cell
  • exchange organs like the kidney, and skin.

The Body Regulates pH in Several Ways

  • Buffers are weak acid mixtures (such as bicarbonate/CO2) which minimize pH change
    • Buffer is always a mixture of 2 compounds
      • One compound takes up H ions if there are too many (H acceptor)
      • The second compound releases H ions if there are not enough (H donor)
    • The strength of a buffer is given by the buffer capacity
      • Buffer capacity is proportional to the buffer concentration and to a parameter known as the pK
    • Mouth bacteria produce acids which attack teeth, producing caries (cavities). People with low buffer capacities in their saliva have more caries than those with high buffer capacities.
  • CO2 gas (a potential acid) is eliminated by the lungs
  • Other acids and bases are eliminated by the kidneys

Oxygen Transport

In adult humans the hemoglobin (Hb) molecule

  • consists of four polypeptides:
    • two alpha (α) chains of 141 amino acids and
    • two beta (β) chains of 146 amino acids
  • Each of these is attached the prosthetic group heme.
  • There is one atom of iron at the center of each heme.
  • One molecule of oxygen can bind to each heme.

The reaction is reversible.

  • Under the conditions of lower temperature, higher pH, and increased oxygen pressure in the capillaries of the lungs, the reaction proceeds to the right. The purple-red deoxygenated hemoglobin of the venous blood becomes the bright-red oxyhemoglobin of the arterial blood.
  • Under the conditions of higher temperature, lower pH, and lower oxygen pressure in the tissues, the reverse reaction is promoted and oxyhemoglobin gives up its oxygen.

Hormones are carried by the blood throughout the entire body, yet they affect only certain cells.  The specific cells that respond to a given hormone have receptor sites for that hormone.  

 

This is sort of a lock and key mechanism.  If the key fits the lock, then the door will open.  If a hormone fits the receptor site, then there will be an effect.  If a hormone and a receptor site do not match, then there is no reaction.  All of the cells that have receptor sites for a given hormone make up the target tissue for that hormone.  In some cases, the target tissue is localized in a single gland or organ.  In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected.  

 

Hormones bring about their characteristic effects on target cells by modifying cellular activity.  Cells in a target tissue have receptor sites for specific hormones.  Receptor sites may be located on the surface of the cell membrane or in the interior of the cell.

 

In general those protein hormones are unable to diffuse through the cell membrane and react with receptor sites on the surface of the cell.  The hormone receptor reaction on the cell membrane activates an enzyme within the membrane, called adenyl cyclase, which diffuses into the cytoplasm.  Within the cell, adenyl cyclase catalyzes or starts the process of removal of phosphates from ATP to produce cyclic adenosine monophosphate or c AMP.  This c AMP activates enzymes within the cytoplasm that alter or change the cellular activity.  The protein hormone, which reacts at the cell membrane, is called the first messenger.  c Amp that brings about the action attributed to the hormone is called the second messenger.  This type of action is relatively rapid because the precursors are already present and they just needed to be activated in some way.  

Blood Transfusions

  • Some of these units ("whole blood") were transfused directly into patients (e.g., to replace blood lost by trauma or during surgery).
  • Most were further fractionated into components, including:
    • RBCs. When refrigerated these can be used for up to 42 days.
    • platelets. These must be stored at room temperature and thus can be saved for only 5 days.
    • plasma. This can be frozen and stored for up to a year.

safety of donated blood

A variety of infectious agents can be present in blood.

  • viruses (e.g., HIV-1, hepatitis B and C, HTLV, West Nile virus
  • bacteria like the spirochete of syphilis
  • protozoans like the agents of malaria and babesiosis
  • prions (e.g., the agent of variant Crueutzfeldt-Jakob disease)

and could be transmitted to recipients. To minimize these risks,

  • donors are questioned about their possible exposure to these agents;
  • each unit of blood is tested for a variety of infectious agents.

Most of these tests are performed with enzyme immunoassays (EIA) and detect antibodies against the agents. blood is now also checked for the presence of the RNA of these RNA viruses:

  • HIV-1
  • hepatitis C
  • West Nile virus
  • by the so-called nucleic acid-amplification test (NAT).

The endocrine system along with the nervous system functions in the regulation of body activities.  The nervous system acts through electrical impulses and neurotransmitters to cause muscle contraction and glandular secretion and interpretation of impulses.  The endocrine system acts through chemical messengers called hormones that influence growth, development, and metabolic activities

Factors , affecting glomerular filtration rate :

 Factors that may influence the different pressure forces , or the filtration coefficient will affect the glomerular filtration rate . 
 
1. Dehydration : Causes decrease hydrostatic pressure , and thus decreases GFR
2- Liver diseases that may decrease the plasma proteins and decrease the oncotic pressure , and thus increases glomerular filtration rate .
3- Sympathetic stimulation : will decrease the diameter of afferent arteriole and thus decreases glomerular filtration rate.
4- Renal diseases : Nephrotic syndrome for example decreases the number of working nephrons and thus decreases the filtration coefficient and thus decreases the glomerular filtration rate.
Glomerulonephritis will causes thickening of the glomerular basement membrane and thus decreases the glomerular filtration rate by decreasing the filtration coefficient too.

Explore by Exams