NEET MDS Lessons
Physiology
The Parathyroid Glands
The parathyroid glands are 4 tiny structures embedded in the rear surface of the thyroid gland. They secrete parathyroid hormone (PTH) a polypeptide of 84 amino acids. PTH increases the concentration of Ca2+ in the blood in three ways. PTH promotes
- release of Ca2+ from the huge reservoir in the bones. (99% of the calcium in the body is incorporated in our bones.)
- reabsorption of Ca2+ from the fluid in the tubules in the kidneys
- absorption of Ca2+ from the contents of the intestine (this action is mediated by calcitriol, the active form of vitamin D.)
PTH also regulates the level of phosphate in the blood. Secretion of PTH reduces the efficiency with which phosphate is reclaimed in the proximal tubules of the kidney causing a drop in the phosphate concentration of the blood.
Hyperparathyroidism
Elevate the level of PTH causing a rise in the level of blood Ca2+ .Calcium may be withdrawn from the bones that they become brittle and break.
Patients with this disorder have high levels of Ca2+ in their blood and excrete small amounts of Ca2+ in their urine. This causes hyperparathyroidism.
Hypoparathyroidism
This disorder have low levels of Ca2+ in their blood and excrete large amounts of Ca2+ in their urine.
The Lymphatic System
Functions of the lymphatic system:
1) to maintain the pressure and volume of the extracellular fluid by returning excess water and dissolved substances from the interstitial fluid to the circulation.
2) lymph nodes and other lymphoid tissues are the site of clonal production of immunocompetent lymphocytes and macrophages in the specific immune response.
Filtration forces water and dissolved substances from the capillaries into the interstitial fluid. Not all of this water is returned to the blood by osmosis, and excess fluid is picked up by lymph capillaries to become lymph. From lymph capillaries fluid flows into lymph veins (lymphatic vessels) which virtually parallel the circulatory veins and are structurally very similar to them, including the presence of semilunar valves.
The lymphatic veins flow into one of two lymph ducts. The right lymph duct drains the right arm, shoulder area, and the right side of the head and neck. The left lymph duct, or thoracic duct, drains everything else, including the legs, GI tract and other abdominal organs, thoracic organs, and the left side of the head and neck and left arm and shoulder.
These ducts then drain into the subclavian veins on each side where they join the internal jugular veins to form the brachiocephalic veins.
Lymph nodes lie along the lymph veins successively filtering lymph. Afferent lymph veins enter each node, efferent veins lead to the next node becoming afferent veins upon reaching it.
Lymphokinetic motion (flow of the lymph) due to:
1) Lymph flows down the pressure gradient.
2) Muscular and respiratory pumps push lymph forward due to function of the semilunar valves.
Other lymphoid tissue:
1. Lymph nodes: Lymph nodes are small encapsulated organs located along the pathway of lymphatic vessels. They vary from about 1 mm to 1 to 2 cm in diameter and are widely distributed throughout the body, with large concentrations occurring in the areas of convergence of lymph vessels. They serve as filters through which lymph percolates on its way to the blood. Antigen-activated lymphocytes differentiate and proliferate by cloning in the lymph nodes.
2. Diffuse Lymphatic Tissue and Lymphatic nodules: The alimentary canal, respiratory passages, and genitourinary tract are guarded by accumulations of lymphatic tissue that are not enclosed by a capsule (i.e. they are diffuse) and are found in connective tissue beneath the epithelial mucosa. These cells intercept foreign antigens and then travel to lymph nodes to undergo differentiation and proliferation. Local concentrations of lymphocytes in these systems and other areas are called lymphatic nodules. In general these are single and random but are more concentrated in the GI tract in the ileum, appendix, cecum, and tonsils. These are collectively called the Gut Associated Lymphatic Tissue (GALT). MALT (Mucosa Associated Lymphatic Tissue) includes these plus the diffuse lymph tissue in the respiratory tract.
3. The thymus: The thymus is where immature lymphocytes differentiate into T-lymphocytes. The thymus is fully formed and functional at birth. Characteristic features of thymic structure persist until about puberty, when lymphocyte processing and proliferation are dramatically reduced and eventually eliminated and the thymic tissue is largely replaced by adipose tissue. The lymphocytes released by the thymus are carried to lymph nodes, spleen, and other lymphatic tissue where they form colonies. These colonies form the basis of T-lymphocyte proliferation in the specific immune response. T-lymphocytes survive for long periods and recirculate through lymphatic tissues.
The transformation of primitive or immature lymphocytes into T-lymphocytes and their proliferation in the lymph nodes is promoted by a thymic hormone called thymosin. Ocassionally the thymus persists and may become cancerous after puberty and and the continued secretion of thymosin and the production of abnormal T-cells may contribute to some autoimmune disorders. Conversely, lack of thymosin may also allow inadequate immunologic surveillance and thymosin has been used experimentally to stimulate T-lymphocyte proliferation to fight lymphoma and other cancers.
4. The spleen: The spleen filters the blood and reacts immunologically to blood-borne antigens. This is both a morphologic (physical) and physiologic process. In addition to large numbers of lymphocytes the spleen contains specialized vascular spaces, a meshwork of reticular cells and fibers, and a rich supply of macrophages which monitor the blood. Connective tissue forms a capsule and trabeculae which contain myofibroblasts, which are contractile. The human spleen holds relatively little blood compared to other mammals, but it has the capacity for contraction to release this blood into the circulation during anoxic stress. White pulp in the spleen contains lymphocytes and is equivalent to other lymph tissue, while red pulp contains large numbers of red blood cells that it filters and degrades.
The spleen functions in both immune and hematopoietic systems. Immune functions include: proliferation of lymphocytes, production of antibodies, removal of antigens from the blood. Hematopoietic functions include: formation of blood cells during fetal life, removal and destruction of aged, damaged and abnormal red cells and platelets, retrieval of iron from hemoglobin degradation, storage of red blood cells.
Respiration occurs in three steps :
1- Mechanical ventilation : inhaling and exhaling of air between lungs and atmosphere.
2- Gas exchange : between pulmonary alveoli and pulmonary capillaries.
3- Transport of gases from the lung to the peripheral tissues , and from the peripheral tissues back to blood .
These steps are well regulated by neural and chemical regulation.
Respiratory tract is subdivided into upper and lower respiratory tract. The upper respiratory tract involves , nose , oropharynx and nasopharynx , while the lower respiratory tract involves larynx , trachea , bronchi ,and lungs .
Nose fulfills three important functions which are :
1. warming of inhaled air .
b. filtration of air .
c. humidification of air .
Pharynx is a muscular tube , which forms a passageway for air and food .During swallowing the epiglottis closes the larynx and the bolus of food falls in the esophagus .
Larynx is a respiratory organ that connects pharynx with trachea . It is composed of many cartilages and muscles and
vocal cords . Its role in respiration is limited to being a conductive passageway for air .
Trachea is a tube composed of C shaped cartilage rings from anterior side, and of muscle (trachealis muscle ) from its posterior side.The rings prevent trachea from collapsing during the inspiration.
From the trachea the bronchi are branched into right and left bronchus ( primary bronchi) , which enter the lung .Then they repeatedly branch into secondary and tertiary bronchi and then into terminal and respiratory broncholes.There are about 23 branching levels from the right and left bronchi to the respiratory bronchioles , the first upper 17 branching are considered as a part of the conductive zones , while the lower 6 are considered to be respiratory zone.
The cartilaginous component decreases gradually from the trachea to the bronchioles . Bronchioles are totally composed of smooth muscles ( no cartilage) . With each branching the diameter of bronchi get smaller , the smallest diameter of respiratory passageways is that of respiratory bronchiole.
Lungs are evolved by pleura . Pleura is composed of two layers : visceral and parietal .
Between the two layers of pleura , there is a pleural cavity , filled with a fluid that decrease the friction between the visceral and parietal pleura.
Respiratory muscles : There are two group of respiratory muscles:
1. Inspiratory muscles : diaphragm and external intercostal muscle ( contract during quiet breathing ) , and accessory inspiratory muscles : scaleni , sternocleidomastoid , internal pectoral muscle , and others( contract during forceful inspiration).
2. Expiratory muscles : internal intercostal muscles , and abdominal muscles ( contract during forceful expiration)
Cells, cytoplasm, and organelles:
- Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles
- Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed)
- Organelles include:
- Endoplasmic reticulum : 2 forms: smooth and rough; the surface of rough ER is coated with ribosomes; the surface of smooth ER is not , Functions include: mechanical support, synthesis (especially proteins by rough ER), and transport
- Golgi complex consists of a series of flattened sacs (or cisternae) functions include: synthesis (of substances likes phospholipids), packaging of materials for transport (in vesicles), and production of lysosomes
- Lysosome : membrane-enclosed spheres that contain powerful digestive enzymes , functions include destruction of damaged cells & digestion of phagocytosed materials
- Mitochondria : have double-membrane: outer membrane & highly convoluted inner membrane
- inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production
- primary function is production of adenosine triphosphate (ATP)
- Ribosome-:composed of rRNA (ribosomal RNA) & protein , primary function is to produce proteins
- Centrioles :paired cylindrical structures located near the nucleas , play an important role in cell division
- Flagella & cilia - hair-like projections from some human cells
- cilia are relatively short & numerous (e.g., those lining trachea)
- a flagellum is relatively long and there's typically just one (e.g., sperm)
-
- Villi Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine)
Events in Muscle Contraction - the sequence of events in crossbridge formation:
1) In response to Ca2+ release into the sarcoplasm, the troponin-tropomyosin complex removes its block from actin, and the myosin heads immediately bind to active sites.
2) The myosin heads then swivel, the Working Stroke, pulling the Z-lines closer together and shortening the sarcomeres. As this occurs the products of ATP hydrolysis, ADP and Pi, are released.
3) ATP is taken up by the myosin heads as the crossbridges detach. If ATP is unavailable at this point the crossbridges cannot detach and release. Such a condition occurs in rigor mortis, the tensing seen in muscles after death, and in extreme forms of contracture in which muscle metabolism can no longer provide ATP.
4) ATP is hydrolyzed and the energy transferred to the myosin heads as they cock and reset for the next stimulus.
Excitation-Contraction Coupling: the Neuromuscular Junction
Each muscle cell is stimulated by a motor neuron axon. The point where the axon terminus contacts the sarcolemma is at a synapse called the neuromuscular junction. The terminus of the axon at the sarcolemma is called the motor end plate. The sarcolemma is polarized, in part due to the unequal distribution of ions due to the Sodium/Potassium Pump.
1) Impulse arrives at the motor end plate (axon terminus) causing Ca2+ to enter the axon.
2) Ca2+ binds to ACh vesicles causing them to release the ACh (acetylcholine) into the synapse by exocytosis.
3) ACH diffuses across the synapse to bind to receptors on the sarcolemma. Binding of ACH to the receptors opens chemically-gated ion channels causing Na+ to enter the cell producing depolarization.
4) When threshold depolarization occurs, a new impulse (action potential) is produced that will move along the sarcolemma. (This occurs because voltage-gated ion channels open as a result of the depolarization -
5) The sarcolemma repolarizes:
a) K+ leaves cell (potassium channels open as sodium channels close) returning positive ions to the outside of the sarcolemma. (More K+ actually leaves than necessary and the membrane is hyperpolarized briefly. This causes the relative refractory period) (b) Na+/K+ pump eventually restores resting ion distribution. The Na+/K+ pump is very slow compared to the movement of ions through the ion gates. But a muscle can be stimulated thousands of times before the ion distribution is substantially affected.
6) ACH broken down by ACH-E (a.k.a. ACHase, cholinesterase). This permits the receptors to respond to another stimulus.
Excitation-Contraction Coupling:
1) The impulse (action potential) travels along the sarcolemma. At each point the voltaged-gated Na+ channels open to cause depolarization, and then the K+ channels open to produce repolarization.
2) The impulse enters the cell through the T-tublules, located at each Z-disk, and reach the sarcoplasmic reticulum (SR), stimulating it.
3) The SR releases Ca2+ into the sarcoplasm, triggering the muscle contraction as previously discussed.
4) Ca2+ is pumped out of the sarcoplasm by the SR and another stimulus will be required to continue the muscle contraction.
Principal heart sounds
1. S1: closure of AV valves;typically auscultated as a single sound
Clinical note: In certain circumstances, S1 may be accentuated. This occurs when the valve leaflets are “slammed” shut in early systole from a greater than normal distance because they have not had time to drift closer together. Three conditions that can result in an accentuated S1 are a shortened PR interval, mild mitral stenosis, and high cardiac-output states or tachycardia.
2. S2: closure of semilunar valves in early diastole , normally “split” during inspiration . S2: best appreciated in the 2nd or 3rd left intercostal space
Clinical note: Paradoxical or “reversed” splitting occurs when S2 splitting occurs with expiration and disappears on inspiration. Moreover, in paradoxical splitting, the pulmonic valve closes before the aortic valve, such that P2 precedes A2. The most common cause is left bundle branch block (LBBB). In LBBB, depolarization of the left ventricle is impaired, resulting in delayed left ventricular contraction and aortic valve closure.
3. S3: ventricular gallop, presence reflects volume-overloaded state
Clinical note: An S3 is usually caused by volume overload in congestive heart failure. It can also be associated with valvular disease, such as advanced mitral regurgitation, in which the “regurgitated” blood increases the rate of ventricular filling during early diastole.
4. S4: atrial gallop, S4: atrial contraction against a stiff ventricle, often heard after an acute myocardial infarction.
Clinical note: An S4 usually indicates decreased ventricular compliance (i.e., the ventricle does not relax as easily), which is commonly associated with ventricular hypertrophy or myocardial ischemia. An S4 is almost always present after an acute myocardial infarction. It is loudest at the apex with the patient in the left lateral decubitus position (lying on their left side).
Heart sounds
Heart sounds are a result of beating heart and resultant blood flow . that could be detected by a stethoscope during auscultation . Auscultation is a part of physical examination that doctors have to practice them perfectly.
Before discussion the origin and nature of the heart sounds we have to distinguish between the heart sounds and hurt murmurs. Heart murmurs are pathological noises that results from abnormal blood flow in the heart or blood vessels.
Physiologically , blood flow has a laminar pattern , which means that blood flows in form of layers , where the central layer is the most rapid . Laminar blood flow could be turned into turbulent one .
Turbulent blood flow is a result of stenotic ( narrowed ) valves or blood vessels , insufficient valves , roughened vessels` wall or endocardium , and many diseases . The turbulent blood flow causes noisy murmurs inside or outside the heart.
Heart sounds ( especially first and second sounds ) are mainly a result of closure of the valves of the heart . While the third sound is a result of vibration of ventricular wall and the leaflets of the opened AV valves after rapid inflow of blood from the atria to ventricles .
Third heart sound is physiologic in children but pathological in adults.
The four heart sound is a result of the atrial systole and vibration of the AV valves , due to blood rush during atrial systole . It is inaudible neither in adults nor in children . It is just detectable by the phonocardiogram .
Characteristic of heart sounds :
1. First heart sound (S1 , lub ) : a soft and low pitch sound, caused by closure of AV valves.Usually has two components ( M1( mitral ) and T1 ( tricuspid ). Normally M1 preceads T1.
2. Second heart sound ( S2 , dub) : sharp and high pitch sound . caused by closure of semilunar valves. It also has two components A2 ( aortic) and P2 ( pulmonary) . A2 preceads P2.
3. Third heart sound (S3) : low pitched sound.
4. Fourth heart sound ( S4) very low pitched sound.
As we notice : the first three sounds are related to ventricular activity , while the fourth heart sound is related to atrial activity.
Closure of valves is not the direct cause for heart sounds , but sharp blocking of blood of backward returning of blood by the closing valve is the direct cause.