Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

As the contents of the stomach become thoroughly liquefied, they pass into the duodenum, the first segment  of the small intestine. The duodenum is the first 10" of the small intestine

Two ducts enter the duodenum:

  • one draining the gall bladder and hence the liver
  • the other draining the exocrine portion of the pancreas.

From the intestinal mucosal cells, and from the liver and gallbladder. Secretions from the pancreas and bile from the gallbladder enter the duodenum through the hepatopancreatic ampulla and the sphincter of Oddi. These lie where the pancreatic duct and common bile duct join before entering the duodenum. The presence of fatty chyme in the duodenum causes release of the hormone CCK into the bloodstream. CCK is one of the enterogastrones and its main function, besides inhibiting the stomach, is to stimulate the release of enzymes by the pancreas, and the contraction of the gallbladder to release bile. It also stimulates the liver to produce bile. Consumption of excess fat results in excessive bile production by the liver, and this can lead to the formation of gallstones from precipitation of the bile salts. 

The acid in the chyme stimulates the release of secretin which causes the pancreas to release bicarbonate which neutralizes the acidity

Carbon Dioxide Transport

Carbon dioxide (CO2) combines with water forming carbonic acid, which dissociates into a hydrogen ion (H+) and a bicarbonate ions:

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3

95% of the CO2 generated in the tissues is carried in the red blood cells:

  • It probably enters (and leaves) the cell by diffusing through transmembrane channels in the plasma membrane. (One of the proteins that forms the channel is the D antigen that is the most important factor in the Rh system of blood groups.)
  • Once inside, about one-half of the CO2 is directly bound to hemoglobin (at a site different from the one that binds oxygen).
  • The rest is converted — following the equation above — by the enzyme carbonic anhydrase into
    • bicarbonate ions that diffuse back out into the plasma and
    • hydrogen ions (H+) that bind to the protein portion of the hemoglobin (thus having no effect on pH).

Only about 5% of the CO2 generated in the tissues dissolves directly in the plasma. (A good thing, too: if all the CO2 we make were carried this way, the pH of the blood would drop from its normal 7.4 to an instantly-fatal 4.5!)

When the red cells reach the lungs, these reactions are reversed and CO2 is released to the air of the alveoli.

Remember the following principles before proceeding :
- Reabsorption occurs for most of substances that have been previously filterd .
- The direction of reabsorption is from the tubules to the peritubular capillaries
- All of transport mechanism are used here.
- Different morphology of the cells of different parts of the tubules contribute to reabsorption of different substances .
- There are two routes of reabsorption: Paracellular and transcellular : Paracellular reabsorption depends on the tightness of the tight junction which varies from regeon to region in the nephrons .Transcellular depends on presence of transporters ( carriers and channels for example).


1. Reabsorption of glucose , amino acids , and proteins :

Transport of glucose occurs in the proximal tubule . Cells of proximal tubules are similar to those of the intestinal mucosa as the apical membrane has brush border form to increase the surface area for reabsorption , the cells have plenty of mitochondria which inform us that high amount of energy is required for active transport , and the basolateral membrane of the cells contain sodium -potassium pumps , while the apical membrane contains a lot of carrier and channels .

The tight junction between the tubular cells of the proximal tubules are not that (tight) which allow paracellular transport.
Reabsorption of glucose starts by active transport of  Na by the pumps on the basolateral membrane . This will create Na gradient which will cause Na to pass the apical membrane down its concentration gradient . Glucose also passes the membrane up its concentration gradient using sodium -glucose symporter as a secondary active transport.


The concentration of glucose will be increased in the cell and this will enable the glucose to pass down concentration gradient to the interstitium by glucose uniporter . Glucose will then pass to the peritubular capillaries by simple bulk flow.

Remember: Glucose reabsorption occurs via transcellular route .
          Glucose transport has transport maximum . In normal situation there is no glucose in the urine , but in uncontrolled diabetes mellitus patients glucose level exceeds its transport maximum (390 mg/dl) and thus will appear in urine .
                   
                   
                   
2. Reabsorption of Amino acids : Use secondary active transport mechanism like glucose.

3. Reabsorption of proteins : 

Plasma proteins are not filtered in Bowman capsule but some proteins and peptides in blood may pass the filtration membrane and then reabsorbed . Some peptides are reabsorbed paracellulary , while the others bind to the apical membrane and then enter the cells by endocytosis , where they will degraded by peptidase enzymes to amino acids .

4. Reabsorption of sodium , water , and chloride:

65 % of sodium is reabsorbed in the proximal tubules , while 25% are reabsorbed in the thick ascending limb of loob of Henle , 9% in the distal and collecting tubules and collecting ducts .
90% of sodium reabsorption occurs independently from its plasma level (unregulated) , This is true for sodium reabsorbed in proximal tubule and loop of Henle , while the 9% that is reabsorbed in distal ,collecting tubules and collecting ducts is regulated by Aldosterone. 


In proximal tubules : 65% of sodium is reabsorbed . The initial step occurs by creating sodium gradient  by sodium-potassium pump on the basolateral membrane . then the sodium will pass from the lumen into the cells down concentration gradient by sodium -glucose symporter , sodium -phosphate symporter and by sodium- hydrogen antiporter and others                    
                   
After reabsorption of sodium , an electrical gradient will be created , then chloride is reabsorbed following the sodium  . Thus the major cation and anion leave the lumen to the the interstitium and thus the water follows by osmosis . 65% of water is reabsorbed in the proximal tubule.

Discending limb of loop of Henle is impermeable to electrolytes but avidly permeable to water . 10 % of water is reabsorbed in the discending thin limb of loob of Henle .

The thick ascending limb of loop of Henly is permeable to electrolytes , due to the presence of Na2ClK syporter . 25% of sodium is reabsorbed here .

In the distal and collecting tubules and the collecting ducts 9% of sodium is reabsorbed .this occurs under aldosterone control depending on sodium plasma level. 1% of sodium is excreted .

Water is not reabsorbed from distal tubule but 5-25% of water is reabsorbed in collecting tubules .

The cell membrane is called the sarcolemma. This membrane is structured to receive and conduct stimuli. The sarcoplasm of the cell is filled with contractile myofibrils and this results in the nuclei and other organelles being relegated to the edge of the cell.

Myofibrils are contractile units within the cell which consist of a regular array of protein myofilaments. Each myofilament runs longitudinally with respect to the muscle fiber. There are two types: the thick bands and the thin bands. Thick bands are made of multiple molecules of a protein called myosin. The thin bands are made of multiple molecules of a protein called actin. The thin actin bands are attached to a Z-line or Z-disk of an elastic protein called titin. The titin protein also extends into the myofibril anchoring the other bands in position. From each Z-line to the next is a unit called the 

    The sarcomere is the smallest contractile unit in the myofibril. Sarcomeres contract because the Z-lines move closer together. As the sarcomeres contract the myofibrils contract. As the myofibrils contract the muscle cell contracts. And as the cells contract the entire muscle contracts.

The arrangement of the thick myosin filaments across the myofibrils and the cell causes them to refract light and produce a dark band known as the A Band. In between the A bands is a light area where there are no thick myofilaments, only thin actin filaments. These are called the I Bands. The dark bands are the striations seen with the light microscope.

Heart is a hollow muscular organ , that is located in the middle mediastinum  between the two bony structures of the sternum and the vertebral column ( a very important location for applying Cardiopulmonary Resuscitation - CPR- ) .
It has a shape of clenched fist , which weighs about 300 grams ( with mild variation between male and female ).
  Heart has an apex that is anteriorly , inferiorly , and leftward oriented , and a base , that is posteriorly , superiorly and rightward oriented   .
 In addition to its apex and base the heart has anterior , posterior and left surfaces.
 
 The wall of the heart is composed of three layers :
 
1. Endocardium : The innermost layer , which lines the heart chambers and is in direct contact with the blood . It is composed of endothelial cells that are similar to those , that line the blood vessels , and of connective tissue too. 
 Endocardium has a smooth surface that prevents blood clotting, as it ensures laminar blood flow .

 Clinical Physiology 
 Endocarditis is the inflammation of the endocardium , which is resistant to antibiotic treatment and difficult to cure.Endocarditis usually involves heart valves and chordae tendineae too.

 2. Myocardium  : The middle layer of the cardiac wall . It is the thickest among the three layers , and is composed of two types of cardiac muscles :
a. contractile muscle cells (form about 98-99% of the cardiac muscle ) .
 b- non-contractile muscle cells ( form about 1-2 % of the cardiac muscles and are the cells that form excitatory-conductive system of the heart).
 The cardiac muscle cells are similar to the skeletal muscles in that they are striated , but similar to the smooth muscles in being involuntary and connected to each others via gap junctions , that facilitate conduction of electrical potential from one cell to the others. Desmosomes adhere cardiac muscle cells to each others .

 3- Epicardium :  is the outermost and protective layer of the heart . It is composed of connective tissue , and form the inner layer of the pericardium ( visceral pericardium - see bellow).

 Pericardium: 
The heart is surrounded by a fluid-fill sac , which is known as pericardium . Pericardium is composed of two layers ( doubled layer membrane ) , between which a fluid-fill pericardial cavity exist .

 The outer layer is called fibrous pericardium , while the inner layer is called serous pericardium , which is subdivided into parietal pericardium and visceral pericardium . The visceral pericardium is the previously mentioned outermost layer of heart ( epicardium) .
Pericardial sac plays an important role in protection of heart from external hazards and infections , as it fixes the heart and limits its motion. It also prevents excessive dilation of the heart.

Clinical physiology: 

When there is excessive fluid in the pericardial cavity as a result of pericardial effusion , a cardiac tamponade will develop . cardiac tamponade means compression of the heart within the pericardial sac , which will prevent the relaxation of the heart ( heart will not be able to fully expand ) , and thus the circulating blood volume will be decreased (obstructive shock) . This is a life threatening situation which has to be urgently cured by  pericardiocentesis . 


Chambers of the heart : 

Heart has four chambers : two atria and two ventricles . The two right and left atria are separated from the two ventricles by the fibrous skeleton , which involves the right ( tricuspid ) and left ( bicuspid ) valves. Right and left atria are separated from each other by the interatrial  septum .
The two ventricles are separated by the interventricular septum.Interventricular septum is muscular in its lower thick part and fibrous in its upper thin part.
The two atria holds the blood returning from the veins and empty it only in a given right moment into the ventricles. Ventricles pump the blood into the arteries . 

Heart valves : 


There are four valves in the heart : Two atrioventricular valves and two semi-lunar valves:
1. Atrioventricular ( AV ) valves: These valves are found between the atria and ventricles , depending on the number of  the leaflets , the right atrioventricular valve is also called tricuspid valve (has three leaflets ) , while the left one is called bicuspid valve (has two leaflets ) . The shape of the bicuspid valve is similar to the mitre of bishop , so it is also called the mitral valve.
The leaflets of the valves are attached to fibrous threads (composed of collagen fibers ) , known as chordae tendineae , which from their side are attached to papillary muscles in the ventricles. These valves prevent backward flow of blood from ventricles during the systole. 

2. Semi-lunar valves : 

These valves are located on the base of the arteries ( aorta and pulmonary artery ) . They prevent the backward flow of blood from the arteries into ventricles.
The structure of the semilunar valves is quite different from that of the AV valves , as they have crescent-shaped cusps that do not have chorda tendinea , instead these cusps are like pockets which are filled of blood when it returns to the ventricles from the lumen of arteries during the diastole  , so they get closed and prevent the backward flow of blood.

PHYSIOLOGY OF THE BRAIN

  • The Cerebrum (Telencephalon) Lobes of the cerebral cortex

     

    1. Frontal Lobe
      1. Precentral gyrus, Primary Motor Cortex, point to point motor neurons, pyramidal cells: control motor neurons of the brain and spinal cord. See Motor homunculus
      2. Secondary Motor Cortex repetitive patterns
      3. Broca's Motor Speech area
      4. Anterior - abstract thought, planning, decision making, Personality
    2. Parietal Lobe
      1. Post central gyrus, Sensory cortex, See Sensory homunculus, size proportional to sensory receptor density.
      2. Sensory Association area, memory of sensations
    3. Occipital Lobe
      1. Visual cortex, sight (conscious perception of vision)
      2. Visual Association area, correlates visual images with previous images, (memory of vision, )
    4. Temporal Lobe
      1. Auditory Cortex, sound
      2. Auditory Association area, memory of sounds
    5. Common Integratory Center - angular gyrus, Parietal, Temporal & Occipital lobes
      1. One side becomes dominent, integrats sensory (somesthetic, auditory, visual) information
    6. The Basal nuclei (ganglia)
      1. Grey matter (cell bodies) within the White matter of cerebrum, control voluntary movements
    7. Cauadate nucles - chorea (rapi, uncontrolled movements), Parkinsons: (dopamine neurons of substantia nigra to caudate nucles) jerky movements, spasticity, tremor, blank facial expression
    8. The limbic system - ring around the brain stem, emotions(w/hypothalamus), processing of olfactory information

 

  • The Diencephalon

     

    1. The Thalamus - Sensory relay center to cortex (primitive brain!)
    2. The Hypothalamus
      1. core temperature control"thermostat", shivering and nonshivering thermogenesis
      2. hunger & satiety centers, wakefulness, sleep, sexual arousal,
      3. emotions (w/limbic-anger, fear, pain, pleasure), osmoregulation, (ADH secretion),
      4. Secretion of ADH, Oxytocin, Releasing Hormones for Anterior pitutary
      5. Linkage of nervous and endocrine systems

 

  • The Mesencephalon or Midbrain -

     

    1. red nucleus, motor coordination (cerebellum/Motor cortex),
    2. substantia nigra
  • The Metencephalon
    1. The Cerebellum -
      1. Performs automatic adjustments in complex motor activities
      2. Input from Proprioceptors (joint, tendon, muscles), position of body in Space
        1. Motor cortex, intended movements (changes in position of body in Space)
      3. Damping (breaking motor function), Balance, predicting, inhibitory function of Purkinji cells (GABA), speed, force, direction of movement
    2. The Pons - Respiratory control centers (apneustic, pneumotaxic)
      1. Nuclei of cranial nerves V, VI, VII, VIII

 

  • Myelencephalon

     

    1. The Medulla
      1. Visceral motor centers (vasomotor, cardioinhibtory, respiratory)
      2. Reticular Formation RAS system, alert cortex to incoming signals, maintenance of consciousness, arousal from sleep
      3. All Afferent & Efferent fibers pass through, crossing over of motor tracts
    2. Corpus Callosum: Permits communication between cerebralhemispheres
  • Generalized Brain Avtivity
    1. Brain Activity and the Electroencephalogram(EEG)
      1. alpha waves: resting adults whose eyes are closed
      2. beta waves: adults concentrating on a specific task;
      3. theta waves: adults under stress;
      4. delta waves: during deep sleep and in clinical disorders
    2. Brain Seizures
      1. Grand Mal: generalized seizures, involvs gross motor activity, affects the individual for a matter or hours
      2. Petit mal: brief incidents, affect consciousness but may have no obvious motor abnormalities
    3. Chemical Effects on the Brain
      1. Sedatives: reduce CNS activity
      2. Analgesics: relieve pain by affecting pain pathways or peripheral sensations
      3. Psychotropics: alter mood and emotional states
      4. Anticonvulsants: control seizures
      5. Stimulants: facilitate CNS activity
    4. Memory and learning
      1. Short-term, or primary, memories last a short time, immediately accessible (phone number)
      2. Secondary memories fade with time (your address at age 5)
      3. Tertiary memories last a lifetime (your name)
      4. Memories are stored within specific regions of the cerebral cortex.
      5. Learning, a more complex process involving the integration of memories and their use to direct or modify behaviors
      6. Neural basis for memory and learning has yet to be determined.
  • Fibers in CNS
    1. Association fibers: link portions of the cerebrum;
    2. Commissural fibers: link the two hemispheres;
    3. Projection fibers: link the cerebrum to the brain stem

Explore by Exams