Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Blood Groups

Blood groups are created by molecules present on the surface of red blood cells (and often on other cells as well).

The ABO Blood Groups

The ABO blood groups are the most important in assuring safe blood transfusions.

Blood Group

Antigens on RBCs

Antibodies in Serum

Genotypes

A

A

Anti-B

AA or AO

B

B

Anti-A

BB or BO

AB

A and B

Neither

AB

O

Neither

Anti-A and anti-B

OO

When red blood cells carrying one or both antigens are exposed to the corresponding antibodies, they agglutinate; that is, clump together. People usually have antibodies against those red cell antigens that they lack.

The critical principle to be followed is that transfused blood must not contain red cells that the recipient's antibodies can clump. Although theoretically it is possible to transfuse group O blood into any recipient, the antibodies in the donated plasma can damage the recipient's red cells. Thus all transfusions should be done with exactly-matched blood.

The Rh System

Rh antigens are transmembrane proteins with loops exposed at the surface of red blood cells. They appear to be used for the transport of carbon dioxide and/or ammonia across the plasma membrane. They are named for the rhesus monkey in which they were first discovered.

There are a number of Rh antigens. Red cells that are "Rh positive" express the one designated D. About 15% of the population have no RhD antigens and thus are "Rh negative".

The major importance of the Rh system for human health is to avoid the danger of RhD incompatibility between mother and fetus.

During birth, there is often a leakage of the baby's red blood cells into the mother's circulation. If the baby is Rh positive (having inherited the trait from its father) and the mother Rh-negative, these red cells will cause her to develop antibodies against the RhD antigen. The antibodies, usually of the IgG class, do not cause any problems for that child, but can cross the placenta and attack the red cells of a subsequent Rh+ fetus. This destroys the red cells producing anemia and jaundice. The disease, called erythroblastosis fetalis or hemolytic disease of the newborn, may be so severe as to kill the fetus or even the newborn infant. It is an example of an antibody-mediated cytotoxicity disorder.

Although certain other red cell antigens (in addition to Rh) sometimes cause problems for a fetus, an ABO incompatibility does not. Rh incompatibility so dangerous when ABO incompatibility is not

It turns out that most anti-A or anti-B antibodies are of the IgM class and these do not cross the placenta. In fact, an Rh/type O mother carrying an Rh+/type A, B, or AB fetus is resistant to sensitization to the Rh antigen. Presumably her anti-A and anti-B antibodies destroy any fetal cells that enter her blood before they can elicit anti-Rh antibodies in her.

This phenomenon has led to an extremely effective preventive measure to avoid Rh sensitization. Shortly after each birth of an Rh+ baby, the mother is given an injection of anti-Rh antibodies. The preparation is called Rh immune globulin (RhIG) or Rhogam. These passively acquired antibodies destroy any fetal cells that got into her circulation before they can elicit an active immune response in her.

Rh immune globulin came into common use in the United States in 1968, and within a decade the incidence of Rh hemolytic disease became very low.

SPECIAL VISCERAL AFFERENT (SVA) PATHWAYS

Taste

Special visceral afferent (SVA) fibers of cranial nerves VII, IX, and X conduct signals into the solitary tract of the brainstem, ultimately terminating in the nucleus of the solitary tract on the ipsilateral side.

Second-order neurons cross over and ascend through the brainstem in the medial lemniscus to the VPM of the thalamus.

Thalamic projections to area 43 (the primary taste area) of the postcentral gyrus complete the relay.

SVA VII fibers conduct from the chemoreceptors of taste buds on the anterior twothirds of the tongue, while SVA IX fibers conduct taste information from buds on the posterior one-third of the tongue.

SVA X fibers conduct taste signals from those taste cells located throughout the fauces.

Smell

The smell-sensitive cells (olfactory cells) of the olfactory epithelium project their central processes through the cribiform plate of the ethmoid bone, where they synapse with mitral cells. The central processes of the mitral cells pass from the olfactory bulb through the olfactory tract, which divides into a medial and lateral portion The lateral olfactory tract terminates in the prepyriform cortex and parts of the amygdala of the temporal lobe.

These areas represent the primary olfactory cortex. Fibers then project from here to area 28, the secondary olfactory area, for sensory evaluation. The medial olfactory tract projects to the anterior perforated sub­stance, the septum pellucidum, the subcallosal area, and even the contralateral olfactory tract.

Both the medial and lateral olfactory tracts contribute to the visceral reflex pathways, causing the viscerosomatic and viscerovisceral responses.

Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .

To understand the pathophysiology  of the heart failure ,  lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume

Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload    (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .

Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .

Contractility : Reducing the power of contraction such as in  myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .

Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.

Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility  . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff  .

The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .
 

Hormones are carried by the blood throughout the entire body, yet they affect only certain cells.  The specific cells that respond to a given hormone have receptor sites for that hormone.  

 

This is sort of a lock and key mechanism.  If the key fits the lock, then the door will open.  If a hormone fits the receptor site, then there will be an effect.  If a hormone and a receptor site do not match, then there is no reaction.  All of the cells that have receptor sites for a given hormone make up the target tissue for that hormone.  In some cases, the target tissue is localized in a single gland or organ.  In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected.  

 

Hormones bring about their characteristic effects on target cells by modifying cellular activity.  Cells in a target tissue have receptor sites for specific hormones.  Receptor sites may be located on the surface of the cell membrane or in the interior of the cell.

 

In general those protein hormones are unable to diffuse through the cell membrane and react with receptor sites on the surface of the cell.  The hormone receptor reaction on the cell membrane activates an enzyme within the membrane, called adenyl cyclase, which diffuses into the cytoplasm.  Within the cell, adenyl cyclase catalyzes or starts the process of removal of phosphates from ATP to produce cyclic adenosine monophosphate or c AMP.  This c AMP activates enzymes within the cytoplasm that alter or change the cellular activity.  The protein hormone, which reacts at the cell membrane, is called the first messenger.  c Amp that brings about the action attributed to the hormone is called the second messenger.  This type of action is relatively rapid because the precursors are already present and they just needed to be activated in some way.  

 Acute Obstructive Disorders
 1.    Heimlich maneuver
 2.    Bypass, tracheostomy w/catheter to suck up secretion

Functional Divisions of the Nervous System:

1) The Voluntary Nervous System - (ie. somatic division) control of willful control of effectors (skeletal muscles) and conscious perception. Mediates voluntary reflexes.

2) The Autonomic Nervous System - control of autonomic effectors - smooth muscles, cardiac muscle, glands. Responsible for "visceral" reflexes

Respiration occurs in three steps :
1- Mechanical ventilation : inhaling and exhaling of air between lungs and atmosphere.
2- Gas exchange : between pulmonary alveoli and pulmonary capillaries.
3- Transport of gases from the lung to the peripheral tissues , and from the peripheral tissues back to blood .
These steps are well regulated by neural and chemical regulation.

Respiratory tract is subdivided into upper and lower respiratory tract. The upper respiratory tract involves , nose , oropharynx and nasopharynx , while the lower respiratory tract involves larynx , trachea , bronchi ,and lungs .

Nose fulfills three important functions which are :

1. warming of inhaled air .

b. filtration of air .

c. humidification of air .

Pharynx is a muscular tube , which forms a passageway for air and food .During swallowing the epiglottis closes the larynx and the bolus of food falls in the esophagus .

Larynx is a respiratory organ that connects pharynx with trachea . It is composed of many cartilages and muscles and

vocal cords . Its role in respiration is limited to being a conductive passageway for air .

Trachea is a tube composed of C shaped cartilage rings from anterior side, and of muscle (trachealis muscle ) from its posterior side.The rings prevent trachea from collapsing during the inspiration. 

From  the trachea the bronchi are branched into right and left bronchus ( primary bronchi) , which enter the lung .Then they repeatedly branch into secondary and tertiary bronchi and then into terminal and respiratory broncholes.There are about 23 branching levels from the right and left bronchi to the respiratory bronchioles  , the first upper  17 branching are considered as a part of the conductive zones , while the lower 6 are considered to be respiratory zone. 

The cartilaginous component decreases gradually from the trachea to the bronchioles  . Bronchioles are totally composed of smooth muscles ( no cartilage) . With each branching the diameter of bronchi get smaller , the smallest diameter of respiratory passageways is that of respiratory bronchiole. 

Lungs are evolved by pleura . Pleura is composed of two layers : visceral and parietal .
Between the two layers of pleura , there is a pleural cavity , filled with a fluid that decrease the friction between the visceral and parietal pleura.
 

Respiratory muscles : There are two group of respiratory muscles:


1. Inspiratory muscles : diaphragm and external intercostal muscle ( contract during quiet breathing ) , and accessory inspiratory muscles : scaleni , sternocleidomastoid , internal pectoral muscle , and others( contract during forceful inspiration).
 

2. Expiratory muscles : internal intercostal muscles , and abdominal muscles ( contract during forceful expiration)

Explore by Exams