Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Ingestion: Food taken in the mouth is

  • ground into finer particles by the teeth,
  • moistened and lubricated by saliva (secreted by three pairs of salivary glands)
  • small amounts of starch are digested by the amylase present in saliva
  • the resulting bolus of food is swallowed into the esophagus and
  • carried by peristalsis to the stomach.

Hemostasis - the  stopping of the blood. Triggered by a ruptured vessel wall it occurs in several steps:

1) vascular spasm - most vessels will constrict strongly when their walls are damaged. This accounts for individuals not bleeding to death even when limbs are crushed. It also can help to enhance blood clotting in less severe injuries.

2) platelet plug - platelets become sticky when they contact collagen, a protein in the basement membrane of the endothelium exposed when the vessel wall is ruptured. As they stick together they can form a plug which will stem the flow of blood in minor vessels.

3) Formation of the Blood Clot:

A) release of platelet factors - as platelets stick together and to the vascular wall some are ruptured releasing chemicals such as thromboxane, PF3, ADP and other substances. These become prothrombin activators. Thromboxane also makes the platelets even stickier, and increases the vascular constriction. These reactions are self perpetuating and become a cascade which represents a positive feedback mechanism.

B) prothrombin activators : prothrombin (already in the blood) is split into smaller products including thrombin, an active protease.

C) thrombin splits soluble fibrinogen, already present in the plasma, into monomers which then polymerize to produce insoluble fibrin threads. The fibrin threads weave the platelets and other cells together to form the actual clot. This occurs within four to six minutes when the injury is severe and up to 15 minutes when it is not. After 15 minutes the clot begins to retract as the fibrin threads contract, pulling the broken edges of the injury together and smoothing the surface of the clot causing the chemical processes to cease. Eventually the clot will dissolve due to enzymes such as plasmin also present in the blood.

The extrinsic pathway: when tissues are damaged the damaged cells release substances called tissue thromboplastin which also acts as a prothrombin activator. This enhances and speeds coagulation when tissue damage is involved.

Anti-thrombin III - this factor helps to prevent clotting when no trigger is present by removing any thrombin present. Its function is magnified many times when heparin is present. Therefore heparin is used clinically as a short-term anticoagulant.

Vitamin K - stimulates the production of clotting factors including prothrombin and fibrinogen in the liver. This vitamin is normally produced by bacteria in the colon. Coumarin (or coumadin) competes with Vitamin K in the liver and is used clinically for long-term suppression of clotting.

Several factors important to clotting are known to be absent in forms of hemophilia. These factors are produced by specific genes which are mutated in the deficient forms. The factors are  VIII, IX, and XI.

Calcium is necessary for blood clotting and its removal from the blood by complexing with citrate will prevent the blood from clotting during storage

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

Physiology - science that describes how organisms FUNCTION and survive in continually changing environments  

Heart is a hollow muscular organ , that is located in the middle mediastinum  between the two bony structures of the sternum and the vertebral column ( a very important location for applying Cardiopulmonary Resuscitation - CPR- ) .
It has a shape of clenched fist , which weighs about 300 grams ( with mild variation between male and female ).
  Heart has an apex that is anteriorly , inferiorly , and leftward oriented , and a base , that is posteriorly , superiorly and rightward oriented   .
 In addition to its apex and base the heart has anterior , posterior and left surfaces.
 
 The wall of the heart is composed of three layers :
 
1. Endocardium : The innermost layer , which lines the heart chambers and is in direct contact with the blood . It is composed of endothelial cells that are similar to those , that line the blood vessels , and of connective tissue too. 
 Endocardium has a smooth surface that prevents blood clotting, as it ensures laminar blood flow .

 Clinical Physiology 
 Endocarditis is the inflammation of the endocardium , which is resistant to antibiotic treatment and difficult to cure.Endocarditis usually involves heart valves and chordae tendineae too.

 2. Myocardium  : The middle layer of the cardiac wall . It is the thickest among the three layers , and is composed of two types of cardiac muscles :
a. contractile muscle cells (form about 98-99% of the cardiac muscle ) .
 b- non-contractile muscle cells ( form about 1-2 % of the cardiac muscles and are the cells that form excitatory-conductive system of the heart).
 The cardiac muscle cells are similar to the skeletal muscles in that they are striated , but similar to the smooth muscles in being involuntary and connected to each others via gap junctions , that facilitate conduction of electrical potential from one cell to the others. Desmosomes adhere cardiac muscle cells to each others .

 3- Epicardium :  is the outermost and protective layer of the heart . It is composed of connective tissue , and form the inner layer of the pericardium ( visceral pericardium - see bellow).

 Pericardium: 
The heart is surrounded by a fluid-fill sac , which is known as pericardium . Pericardium is composed of two layers ( doubled layer membrane ) , between which a fluid-fill pericardial cavity exist .

 The outer layer is called fibrous pericardium , while the inner layer is called serous pericardium , which is subdivided into parietal pericardium and visceral pericardium . The visceral pericardium is the previously mentioned outermost layer of heart ( epicardium) .
Pericardial sac plays an important role in protection of heart from external hazards and infections , as it fixes the heart and limits its motion. It also prevents excessive dilation of the heart.

Clinical physiology: 

When there is excessive fluid in the pericardial cavity as a result of pericardial effusion , a cardiac tamponade will develop . cardiac tamponade means compression of the heart within the pericardial sac , which will prevent the relaxation of the heart ( heart will not be able to fully expand ) , and thus the circulating blood volume will be decreased (obstructive shock) . This is a life threatening situation which has to be urgently cured by  pericardiocentesis . 


Chambers of the heart : 

Heart has four chambers : two atria and two ventricles . The two right and left atria are separated from the two ventricles by the fibrous skeleton , which involves the right ( tricuspid ) and left ( bicuspid ) valves. Right and left atria are separated from each other by the interatrial  septum .
The two ventricles are separated by the interventricular septum.Interventricular septum is muscular in its lower thick part and fibrous in its upper thin part.
The two atria holds the blood returning from the veins and empty it only in a given right moment into the ventricles. Ventricles pump the blood into the arteries . 

Heart valves : 


There are four valves in the heart : Two atrioventricular valves and two semi-lunar valves:
1. Atrioventricular ( AV ) valves: These valves are found between the atria and ventricles , depending on the number of  the leaflets , the right atrioventricular valve is also called tricuspid valve (has three leaflets ) , while the left one is called bicuspid valve (has two leaflets ) . The shape of the bicuspid valve is similar to the mitre of bishop , so it is also called the mitral valve.
The leaflets of the valves are attached to fibrous threads (composed of collagen fibers ) , known as chordae tendineae , which from their side are attached to papillary muscles in the ventricles. These valves prevent backward flow of blood from ventricles during the systole. 

2. Semi-lunar valves : 

These valves are located on the base of the arteries ( aorta and pulmonary artery ) . They prevent the backward flow of blood from the arteries into ventricles.
The structure of the semilunar valves is quite different from that of the AV valves , as they have crescent-shaped cusps that do not have chorda tendinea , instead these cusps are like pockets which are filled of blood when it returns to the ventricles from the lumen of arteries during the diastole  , so they get closed and prevent the backward flow of blood.

Hormones are carried by the blood throughout the entire body, yet they affect only certain cells.  The specific cells that respond to a given hormone have receptor sites for that hormone.  

 

This is sort of a lock and key mechanism.  If the key fits the lock, then the door will open.  If a hormone fits the receptor site, then there will be an effect.  If a hormone and a receptor site do not match, then there is no reaction.  All of the cells that have receptor sites for a given hormone make up the target tissue for that hormone.  In some cases, the target tissue is localized in a single gland or organ.  In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected.  

 

Hormones bring about their characteristic effects on target cells by modifying cellular activity.  Cells in a target tissue have receptor sites for specific hormones.  Receptor sites may be located on the surface of the cell membrane or in the interior of the cell.

 

In general those protein hormones are unable to diffuse through the cell membrane and react with receptor sites on the surface of the cell.  The hormone receptor reaction on the cell membrane activates an enzyme within the membrane, called adenyl cyclase, which diffuses into the cytoplasm.  Within the cell, adenyl cyclase catalyzes or starts the process of removal of phosphates from ATP to produce cyclic adenosine monophosphate or c AMP.  This c AMP activates enzymes within the cytoplasm that alter or change the cellular activity.  The protein hormone, which reacts at the cell membrane, is called the first messenger.  c Amp that brings about the action attributed to the hormone is called the second messenger.  This type of action is relatively rapid because the precursors are already present and they just needed to be activated in some way.  

4.    Emphysema
1. Permanent enlargement of airways with distension of alveolar walls
 
    Thickened Bronchial Submucosa, Edema & Cellular Infiltration (loss of elasticity), Dilation of Air spaces, due to destruction of alveolar walls (Air trapped by obstruction)

2.    Lower Respiratory tree destruction

    Respiratory Bronchioles, Alveolar ducts, & Alveolar sacs

Types of Emphysema:
    
    1.    Centrilobular (Centriacinar) = Respiratory Bronchioles
    Rarely seen in non Smokers, More in Men than Women, Found in Smokers with Bronchitis

    2.    Panlobular (Panacinar) 

    Hereditary, Single autosomal recessive gene. Deficient in 1-globulin (1-antitrypsin), Protects respiratory tract from neutrophil elastase (Enzyme that distroys lung connective tissue) , Aged persons, Results from Bronchi or Bronchiolar constriction

    NOTE: Smoking = Leading cause of Bronchitis, Emphysema
 

Explore by Exams