Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Lipids:

  • about 40% of the dry mass of a typical cell
  • composed largely of carbon & hydrogen
  • generally insoluble in water
  • involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
  • Subclasses include:
    • Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
    • phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes

steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol

Graded Contractions and Muscle Metabolism

The muscle twitch is a single response to a single stimulus. Muscle twitches vary in length according to the type of muscle cells involved. .

 

Fast twitch muscles such as those which move the eyeball have twitches which reach maximum contraction in 3 to 5 ms (milliseconds).  [superior eye] and [lateral eye] These muscles were mentioned earlier as also having small numbers of cells in their motor units for precise control.

The cells in slow twitch muscles like the postural muscles (e.g. back muscles, soleus) have twitches which reach maximum tension in 40 ms or so.

 The muscles which exhibit most of our body movements have intermediate twitch lengths of 10 to 20 ms.

The latent period, the period of a few ms encompassing the chemical and physical events preceding actual contraction.

This is not the same as the absolute refractory period, the even briefer period when the sarcolemma is depolarized and cannot be stimulated. The relative refractory period occurs after this when the sarcolemma is briefly hyperpolarized and requires a greater than normal stimulus

Following the latent period is the contraction phase in which the shortening of the sarcomeres and cells occurs. Then comes the relaxation phase, a longer period because it is passive, the result of recoil due to the series elastic elements of the muscle.

We do not use the muscle twitch as part of our normal muscle responses. Instead we use graded contractions, contractions of whole muscles which can vary in terms of their strength and degree of contraction. In fact, even relaxed muscles are constantly being stimulated to produce muscle tone, the minimal graded contraction possible.

Muscles exhibit graded contractions in two ways:

1) Quantal Summation or Recruitment - this refers to increasing the number of cells contracting. This is done experimentally by increasing the voltage used to stimulate a muscle, thus reaching the thresholds of more and more cells. In the human body quantal summation is accomplished by the nervous system, stimulating increasing numbers of cells or motor units to increase the force of contraction.

2) Wave Summation ( frequency summation) and Tetanization- this results from stimulating a muscle cell before it has relaxed from a previous stimulus. This is possible because the contraction and relaxation phases are much longer than the refractory period. This causes the contractions to build on one another producing a wave pattern or, if the stimuli are high frequency, a sustained contraction called tetany or tetanus. (The term tetanus is also used for an illness caused by a bacterial toxin which causes contracture of the skeletal muscles.) This form of tetanus is perfectly normal and in fact is the way you maintain a sustained contraction.

Treppe is not a way muscles exhibit graded contractions. It is a warmup phenomenon in which when muscle cells are initially stimulated when cold, they will exhibit gradually increasing responses until they have warmed up. The phenomenon is due to the increasing efficiency of the ion gates as they are repeatedly stimulated. Treppe can be differentiated from quantal summation because the strength of stimulus remains the same in treppe, but increases in quantal summation

Length-Tension Relationship: Another way in which the tension of a muscle can vary is due to the length-tension relationship. This relationship expresses the characteristic that within about 10% the resting length of the muscle, the tension the muscle exerts is maximum. At lengths above or below this optimum length the tension decreases.

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

 Pain, Temperature, and Crude Touch and Pressure

General somatic nociceptors, thermoreceptors, and mechanoreceptors sensitive to crude touch and pressure from the face conduct signals to the brainstem over GSA fibers of cranial nerves V, VII, IX, and X.

The afferent fibers involved are processes of monopolar neurons with cell bodies in the semilunar, geniculate, petrosal, and nodose ganglia, respectively.

The central processes of these neurons enter the spinal tract of V, where they descend through the brainstem for a short distance before terminating in the spinal nucleus of V.

Second-order neurons then cross over the opposite side of the brainstem at various levels to enter the ventral trigeminothalamic tract, where they ascend to the VPM of the thalamus.

Finally, third-order neurons project to the "face" area of the cerebral cortex in areas 3, 1, and 2 .

Discriminating Touch and Pressure

Signals are conducted from general somatic mechanoreceptors over GSA fibers of the trigeminal nerve into the principal sensory nucleus of V, located in the middle pons.

Second-order neurons then conduct the signals to the opposite side of the brainstem, where they ascend in the medial lemniscus to the VPM of the thalamus.

 Thalamic neurons then project to the "face" region of areas 3, I, and 2 of the cerebral cortex.

 Kinesthesia and Subconscious Proprioception

Proprioceptive input from the face is primarily conducted over GSA fibers of the trigeminal nerve.

The peripheral endings of these neurons are the general somatic mechanoreceptors sensitive to both conscious (kinesthetic) and subconscious proprioceptive input.

Their central processes extend from the mesencephalic nucleus to the principal sensory nucleus of V in the pons

The subconscious component is conducted to the cerebellum, while the conscious component travels to the cerebral cortex.

Certain second-order neurons from the principal sensory nucleus relay proprioceptive information concerning subconscious evaluation and integration into the ipsilateral cerebellum.

Other second-order neurons project to the opposite side of the pons and ascend to the VPM of the thalamus as the dorsal trigeminothalamic tract.

Thalamic projections terminate in the face area of the cerebral cortex.

Platelets

Platelets are cell fragments produced from megakaryocytes.

Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.

When blood vessels are damaged, fibrils of collagen are exposed.

  • von Willebrand factor links the collagen to platelets forming a plug of platelets there.
  • The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
  • (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)

ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.

Events in gastric function:

1) Signals from vagus nerve begin gastric secretion in cephalic phase.

2) Physical contact by food triggers release of pepsinogen and H+ in gastric phase.

3) Muscle contraction churns and liquefies chyme and builds pressure toward pyloric sphincter.

4) Gastrin is released into the blood by cells in the pylorus. Gastrin reinforces the other stimuli and acts as a positive feedback mechanism for secretion and motility.

5) The intestinal phase begins when acid chyme enters the duodenum. First more gastrin secretion causes more acid secretion and motility in the stomach.

6) Low pH inhibits gastrin secretion and causes the release of enterogastrones such as GIP into the blood, and causes the enterogastric reflex. These events stop stomach emptying and allow time for digestion in the duodenum before gastrin release again stimulates the stomach.

Proteins:

  • about 50 - 60% of the dry mass of a typical cell
  • subunit is the amino acid & amino acids are linked by peptide bonds
  • 2 functional categories = structural (proteins part of the structure of a cell like those in the cell membrane) & enzymes

Enzymes are catalysts. Enzymes bind temporarily to one or more of the reactants of the reaction they catalyze. In doing so, they lower the amount of activation energy needed and thus speed up the reaction

Explore by Exams