Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

Cell, or Plasma, membrane

  • Structure - 2 primary building blocks include

protein (about 60% of the membrane) and lipid, or

fat (about 40% of the membrane).

The primary lipid is called phospholipids, and molecules of phospholipid form a 'phospholipid bilayer' (two layers of phospholipid molecules). This bilayer forms because the two 'ends' of phospholipid molecules have very different characteristics: one end is polar (or hydrophilic) and one (the hydrocarbon tails below) is non-polar (or hydrophobic):

  • Functions include:
    • supporting and retaining the cytoplasm
    • being a selective barrier .
    • transport
    • communication (via receptors)

Clinical Physiology 

Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .

To understand the pathophysiology  of the heart failure ,  lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume

Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload    (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .

Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .

Contractility : Reducing the power of contraction such as in  myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .

Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.

Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility  . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff  .

The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .

Membrane Structure & Function

Cell Membranes

  • Cell membranes are phospholipid bilayers (2 layers)
  • Bilayer forms a barrier to passage of molecules in an out of cell
  • Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
  • Cholesterol (another lipid) stabilizes cell membranes
  • the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water

Membranes Also Contain Proteins

  • Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
  • Hydrophobic = doesn't like water = likes lipids
  • Membrane proteins have many functions:
    • receptors for hormones
    • pumps for transporting materials across the membrane
    • ion channels
    • adhesion molecules for holding cells to extracellular matrix

cell recognition antigens

  1. PATHOPHYSIOLOGY OF THE CONDUCTION SYSTEM

  2. Cardiac arrhythmias = deviation from normal rate, rhythm

     

    1. Heart block (types) = conduction system damage
      1. Complete Heart Block = 3rd degree block
        1. idioventricular beat (35-45/min)
        2. Atria at normal sinus rhythm
        3. Periods of asystole (dizziness, fainting)
        4. Causes = myocardial infarction of ventricular septum, surgical correction of interseptal defects, drugs
      2. Incomplete Heart Block = 2nd degree block
        1. Not all atrial beats reach ventricle
        2. Ventricular beat every 2nd, 3rd, etc. atrial beat, (2:1 block, 3:1 block)
      3. Incomplete Heart Block = 1st degree block
        1. All atrial beats reach ventricle
        2. PR interval abnormally long = slower conduction
      4. Bundle branch blocks (right or left)
        1. Impulses travel down one side and cross over
        2. Ventricular rate normal, QRS prolonged or abnormal
    2. Fibrillation
      1. Asynchronous contractions = twitching movements
      2. Loss of synchrony = little to No output
      3. Atrial Fibrillation
        1. Irregular ventricular beat & depressed pumping efficiency
        2. Atrial beat = 125 - 150/min, pulse feeble = 60 - 70/min
        3. Treatment = Digitalis - reduces rate of ventricular contraction, reduces pulse deficit
      4. Ventricular Fibrillation
        1. Almost no blood pumped to systemic system
        2. ECG = extremely bizarre
        3. Several minutes = fatal
        4. Treatment = defibrillation, cardiac massage can maintain some cardiac output

The Nerve Impulse

When a nerve is stimulated the resting potential changes. Examples of such stimuli are pressure, electricity, chemicals, etc. Different neurons are sensitive to different stimuli(although most can register pain). The stimulus causes sodium ion channels to open. The rapid change in polarity that moves along the nerve fiber is called the "action potential." In order for an action potential to occur, it must reach threshold. If threshold does not occur, then no action potential can occur. This moving change in polarity has several stages:

Depolarization

The upswing is caused when positively charged sodium ions (Na+) suddenly rush through open sodium gates into a nerve cell. The membrane potential of the stimulated cell undergoes a localized change from -55 millivolts to 0 in a limited area. As additional sodium rushes in, the membrane potential actually reverses its polarity so that the outside of the membrane is negative relative to the inside. During this change of polarity the membrane actually develops a positive value for a moment(+30 millivolts). The change in voltage stimulates the opening of additional sodium channels (called a voltage-gated ion channel). This is an example of a positive feedback loop.

Repolarization

The downswing is caused by the closing of sodium ion channels and the opening of potassium ion channels. Release of positively charged potassium ions (K+) from the nerve cell when potassium gates open. Again, these are opened in response to the positive voltage--they are voltage gated. This expulsion acts to restore the localized negative membrane potential of the cell (about -65 or -70 mV is typical for nerves).


Hyperpolarization

When the potassium ions are below resting potential (-90 mV). Since the cell is hyper polarized, it goes to a refractory phrase.

Refractory phase

The refractory period is a short period of time after the depolarization stage. Shortly after the sodium gates open, they close and go into an inactive conformation. The sodium gates cannot be opened again until the membrane is repolarized to its normal resting potential. The sodium-potassium pump returns sodium ions to the outside and potassium ions to the inside. During the refractory phase this particular area of the nerve cell membrane cannot be depolarized. This refractory area explains why action potentials can only move forward from the point of stimulation.


Factors that affect sensitivity and speed

Sensitivity

Increased permeability of the sodium channel occurs when there is a deficit of calcium ions. When there is a deficit of calcium ions (Ca+2) in the interstitial fluid, the sodium channels are activated (opened) by very little increase of the membrane potential above the normal resting level. The nerve fiber can therefore fire off action potentials spontaneously, resulting in tetany. This could be caused by the lack of hormone from parathyroid glands. It could also be caused by hyperventilation, which leads to a higher pH, which causes calcium to bind and become unavailable.

Speed of Conduction

This area of depolarization/repolarization/recovery moves along a nerve fiber like a very fast wave. In myelinated fibers, conduction is hundreds of times faster because the action potential only occurs at the nodes of Ranvier (pictured below in 'types of neurons') by jumping from node to node. This is called "saltatory" conduction. Damage to the myelin sheath by the disease can cause severe impairment of nerve cell function. Some poisons and drugs interfere with nerve impulses by blocking sodium channels in nerves. See discussion on drug at the end of this outline.

Ventilation simply means inhaling and exhaling of air from the atmospheric air into lungs and then exhaling it from the lung into the atmospheric air.
Air pressure gradient has to exist between two atmospheres to enable a gas to move from one atmosphere to an other.
 

During inspiration: the intrathoracic pressure has to be less than that of atmospheric pressure. This could be achieved by decreasing the intrathoracic pressure as follows:
 

Depending on Boyle`s law , the pressure of gas is inversely proportional to the volume of its container. So increasing the intrathoracic volume will decrease the intrathoracic pressure which will allow the atmospheric air to be inhaled (inspiration) . As decreasing the intrathoracic volume will increase the intrathoracic pressure and causes exhaling of air ( expiration)

 

So. Inspiration  could be actively achieved by the contraction of inspiratory muscles : diaphragm and intercostal muscles. While relaxation of the mentioned muscles will passively cause expiration.
 

Contraction of diaphragm will pull the diaphragm down the abdominal cavity ( will move inferiorly)  , and then increase the intrathoracic volume ( vertically)  . Contraction of external intercostal muscle will pull the ribs upward and forward which will additionally increase the intrathoracic volume ( transversely  , the net result will be increasing the intrathoracic volume and decreasing the intrathoracic pressure.
 

Relaxation of diaphragm will move it superiorly during expiration, the relaxation of external intercostal muscles will pull the ribs downward and backward , and the elastic lungs and chest wall will recoil. The net result is decreasing the intrathoracic volume and increasing intrathoracic pressure.
 

All of this occurs during quiet breathing. During forceful inspiration an accessory inspiratory muscle will be involved ( scaleni , sternocleidomastoid , and others) to increase negativity in the intrathoracic pressure more and more.
 

During forceful expiration the accessory expiratory muscles ( internal intercostal muscles and abdominal muscles ) will be involved to decrease the intrathoracic volume  more and more and then to increase  intrathoracic pressure more and more.

The pressure within the alveoli is called intralveolar  pressure . Between the two phases of respiration it is equal to the atmospheric pressure. It is decreased during inspiration ( about 1 cm H2O ) and increased during expiration ( about +1 cm H2O ) . This difference allow entering of 0.5 L of air into the lungs.

Intrapleural pressure is the pressure of thin fluid between the two pleural layers . It is a slight negative pressure. At the beginning of inspiration it is about -5 cm H2O and reachs -7.5 cm H2O at the end or inspiration.

At the beginning of expiration the intrapleural pressure is -7.5 cm H2O and reaches -5 cmH2O at the end of expiration.
The difference between intralveolar pressure and intrapleural pressure is called transpulmonary pressure.

 

 

Factors , affecting ventilation :
 

Resistance : Gradual decreasing of the diameter of respiratory airway increase the resistance to air flow.
 

Compliance : means the ease , which the lungs expand.It depends on both the elastic forces of the lungs and the elastic forces , caused by the the surface tension of the fluid, lining the alveoli.
 

Surface tension: Molecules of water have tendency to attract each other on the surface of water adjacent to air. In alveoli the surface tension caused by the fluid in the inner surface of the alveoli  may cause collapse of alveoli . The surface tension is decreased by the surfactant .

 

Surfactant is a mixture of phospholipids , proteins and ion m produced by type II pneumocytes.

Immature newborns may suffer from respiratory distress syndrome , due to lack of surfactant which is produced during the last trimester of pregnancy.
 

The elastic fibers of the thoracic wall also participate in lung compliance.

 

HEART DISORDERS

  1. Pump failure => Alters pressure (flow) =>alters oxygen carrying capacity.
    1. Renin release (Juxtaglomerular cells) Kidney
    2. Converts Angiotensinogen => Angiotensin I
    3. In lungs Angiotensin I Converted => Angiotensin II
    4. Angiotensin II = powerful vasoconstrictor (raises pressure, increases afterload)
      1. stimulates thirst
      2. stimulates adrenal cortex to release Aldosterone
        (Sodium retention, potassium loss)
      3. stimulates kidney directly to reabsorb Sodium
      4. releases ADH from Posterior Pituitary
  2. Myocardial Infarction

     

    1. Myocardial Cells die from lack of Oxygen
    2. Adjacent vessels (collateral) dilate to compensate
    3. Intracellular Enzymes leak from dying cells (Necrosis)
      1. Creatine Kinase CK (Creatine Phosphokinase) 3 forms
        1. One isoenzyme = exclusively Heart (MB)
        2. CK-MB blood levels found 2-5 hrs, peak in 24 hrs
        3. Lactic Dehydrogenase found 6-10 hours after. points less clearly to infarction
      2. Serum glutamic oxaloacetic transaminase (SGOT)
        1. Found 6 hrs after infarction, peaks 24-48 hrs at 2 to 15 times normal,
        2. SGOT returns to normal after 3-4 days
    4. Myocardium weakens = Decreased CO & SV (severe - death)
    5. Infarct heal by fibrous repair
    6. Hypertrophy of undamaged myocardial cells
      1. Increased contractility to restore normal CO
      2. Improved by exercise program
    7. Prognosis
      1. 10% uncomplicated recovery
      2. 20% Suddenly fatal
      3. Rest MI not fatal immediately, 15% will die from related causes
  3. Congenital heart disease (Affect oxygenation of blood)
    1. Septal defects
    2. Ductus arteriosus
    3. Valvular heart disease
      1. Stenosis = cusps, fibrotic & thickened, Sometimes fused, can not open
      2. Regurgitation = cusps, retracted, Do not close, blood moves backwards

Explore by Exams