NEET MDS Lessons
Physiology
The cell membrane is called the sarcolemma. This membrane is structured to receive and conduct stimuli. The sarcoplasm of the cell is filled with contractile myofibrils and this results in the nuclei and other organelles being relegated to the edge of the cell.
Myofibrils are contractile units within the cell which consist of a regular array of protein myofilaments. Each myofilament runs longitudinally with respect to the muscle fiber. There are two types: the thick bands and the thin bands. Thick bands are made of multiple molecules of a protein called myosin. The thin bands are made of multiple molecules of a protein called actin. The thin actin bands are attached to a Z-line or Z-disk of an elastic protein called titin. The titin protein also extends into the myofibril anchoring the other bands in position. From each Z-line to the next is a unit called the
The sarcomere is the smallest contractile unit in the myofibril. Sarcomeres contract because the Z-lines move closer together. As the sarcomeres contract the myofibrils contract. As the myofibrils contract the muscle cell contracts. And as the cells contract the entire muscle contracts.
The arrangement of the thick myosin filaments across the myofibrils and the cell causes them to refract light and produce a dark band known as the A Band. In between the A bands is a light area where there are no thick myofilaments, only thin actin filaments. These are called the I Bands. The dark bands are the striations seen with the light microscope.
Contractility : Means ability of cardiac muscle to convert electrical energy of action potential into mechanical energy ( work).
The excitation- contraction coupling of cardiac muscle is similar to that of skeletal muscle , except the lack of motor nerve stimulation.
Cardiac muscle is a self-excited muscle , but the principles of contraction are the same . There are many rules that control the contractility of the cardiac muscles, which are:
1. All or none rule: due to the syncytial nature of the cardiac muscle.There are atrial syncytium and ventricular syncytium . This rule makes the heart an efficient pump.
2. Staircase phenomenon : means gradual increase in muscle contraction following rapidly repeated stimulation..
3. Starling`s law of the heart: The greater the initial length of cardiac muscle fiber , the greater the force of contraction. The initial length is determined by the degree of diastolic filling .The pericardium prevents overstretching of heart , and allows optimal increase in diastolic volume.
Thankful to this law , the heart is able to pump any amount of blood that it receives. But overstretching of cardiac muscle fibers may cause heart failure.
Factors affecting contractility ( inotropism)
I. Positive inotropic factors:
1. sympathetic stimulation: by increasing the permeability of sarcolemma to calcium.
2. moderate increase in temperature . This due to increase metabolism to increase ATP , decrease viscosity of myocardial structures, and increasing calcium influx.
3. Catecholamines , thyroid hormone, and glucagon hormones.
4. mild alkalosis
5. digitalis
6. Xanthines ( caffeine and theophylline )
II. Negative inotropic factors:
1. Parasympathetic stimulation : ( limited to atrial contraction)
2. Acidosis
3. Severe alkalosis
4. excessive warming and cooling .
5. Drugs ;like : Quinidine , Procainamide , and barbiturates .
6. Diphtheria and typhoid toxins.
1.Rhythmicity ( Chronotropism ) : means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization ) . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.
There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
- transplanted heart continues to beat regularly without any nerve supply.
- Embryologically the heart starts to beat before reaching any nerves to them.
- Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.
Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.
Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.
These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.
The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) .
The threshold is also less negative than that of nerve cells ( -40 millivolts ).
The decreased permeability to potassium from its side decrease the eflux of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape
Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.
Factors , affecting the rhythmicity of the cardiac muscle :
I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia
II. Factors that decrease rhythmicity ( negative chronotropic):
1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.
Asthma = Reversible Bronchioconstruction 4%-5% of population
Extrinsic / Atopic = Allergic, inherited (familia), chromosome 11
IgE, Chemical Mediators of inflammation
a. Intrinsic = Negative for Allergy, Normal IgE, Negative Allergic Tests
Nucleotide Imbalance cAMP/cGMP: cAMP = Inhibits mediator release, cGMP = Facilitates mediator release
b. Intolerance to Asprin (Triad Asthma)
c. Nasal Polyps & Asthma
d. Treatment cause, Symptoms in Acute Asthma
1. Bronchial dilators
2. steroids edema from Inflamation
3. Bronchiohygene to prevent Secondary Infection, (Remove Excess Mucus)
4. Education
Glomerular filtration
Kidneys receive about 20% of cardiac output , this is called Renal Blood Flow (RBF) which is approximatley 1.1 L of blood. Plasma in this flow is about 625 ml . It is called Renal Plasma Flow (RPF) .
About 20 % of Plasma entering the glomerular capillaries is filtered into the Bowman`s capsule .
Glomerular filtration rate is about 125 ml/min ( which means 7.5 L/hr and thus 180 L/day) This means that the kidney filters about 180 liters of plasma every day.
The urine flow is about 1ml/min ( about 1.5 liter /day) This means that kidney reabsorbs about 178.5 liters every day .
Filtration occurs through the filtration unit , which includes :
1- endothelial cells of glomerular capillaries , which are fenestrated . Fenestrae are quite small so they prevent filtration of blood cells and most of plasma proteins .
2- Glomerular basement membrane : contains proteoglycan that is negatively charged and repels the negatively charged plasma proteins that may pass the fenestrae due to their small molecular weight like albumin . so the membrane plays an important role in impairing filtration of albumin .
3- Epithelial cells of Bowman`s capsule that have podocytes , which interdigitate to form slits .
Many forces drive the glomerular filtration , which are :
1- Hydrostatic pressure of the capillary blood , which favours filtration . It is about 55 mmHg .
2- Oncotic pressure of the plasma proteins in the glomerular capillary ( opposes filtration ) . It is about 30 mm Hg .
3- Hydrostatic pressure of the Bowman`s capsule , which also opposes filtration. It is about 15 mmHg .
The net pressure is as follows :
Hydrostatic pressure of glomerular capillaries - ( Oncotic pressure of glomerular capillaries + Hydrostatic pressure of the Bowman capsule):
55-(35+10)
=55-45
=10 mmHg .
Te glomerular filtration rate does not depend only on the net pressure , but also on an other value , known as filtration coefficient ( Kf) . The later depends on the surface area of the glomerular capillaries and the hydraulic conductivity of the glomerular capillaries.
The bulk of the pancreas is an exocrine gland secreting pancreatic fluid into the duodenum after a meal. However, scattered through the pancreas are several hundred thousand clusters of cells called islets of Langerhans. The islets are endocrine tissue containing four types of cells. In order of abundance, they are the:
- beta cells, which secrete insulin and amylin;
- alpha cells, which secrete glucagon;
- delta cells, which secrete somatostatin, and
- gamma cells, which secrete a polypeptide of unknown function.
Beta Cells
Beta cells secrete insulin in response to a rising level of blood sugar
Insulin affects many organs. It
- stimulates skeletal muscle fibers to
- take up glucose and convert it into glycogen;
- take up amino acids from the blood and convert them into protein.
- acts on liver cells
- stimulating them to take up glucose from the blood and convert it into glycogen while
- inhibiting production of the enzymes involved in breaking glycogen back down (glycogenolysis) and
- inhibiting gluconeogenesis; that is, the conversion of fats and proteins into glucose.
- acts on fat (adipose) cells to stimulate the uptake of glucose and the synthesis of fat.
- acts on cells in the hypothalamus to reduce appetite.
Diabetes Mellitus
Diabetes mellitus is an endocrine disorder characterized by many signs and symptoms. Primary among these are:
- a failure of the kidney to retain glucose .
- a resulting increase in the volume of urine because of the osmotic effect of this glucose (it reduces the return of water to the blood).
There are three categories of diabetes mellitus:
- Insulin-Dependent Diabetes Mellitus (IDDM) (Type 1) and
- Non Insulin-Dependent Diabetes Mellitus (NIDDM)(Type 2)
- Inherited Forms of Diabetes Mellitus
Insulin-Dependent Diabetes Mellitus (IDDM)
IDDM ( Type 1 diabetes)
- is characterized by little or no circulating insulin;
- most commonly appears in childhood.
- It results from destruction of the beta cells of the islets.
- The destruction results from a cell-mediated autoimmune attack against the beta cells.
- What triggers this attack is still a mystery, although a prior viral infection may be the culprit.
Non Insulin-Dependent Diabetes Mellitus (NIDDM)
Many people develop diabetes mellitus without an accompanying drop in insulin levels In many cases, the problem appears to be a failure to express a sufficient number of glucose transporters in the plasma membrane (and T-system) of their skeletal muscles. Normally when insulin binds to its receptor on the cell surface, it initiates a chain of events that leads to the insertion in the plasma membrane of increased numbers of a transmembrane glucose transporter. This transporter forms a channel that permits the facilitated diffusion of glucose into the cell. Skeletal muscle is the major "sink" for removing excess glucose from the blood (and converting it into glycogen). In NIDDM, the patient's ability to remove glucose from the blood and convert it into glycogen is reduced. This is called insulin resistance. NIDDM (also called Type 2 diabetes mellitus) usually occurs in adults and, particularly often, in overweight people.
Alpha Cells
The alpha cells of the islets secrete glucagon, a polypeptide of 29 amino acids. Glucagon acts principally on the liver where it stimulates the conversion of glycogen into glucose (glycogenolysis) which is deposited in the blood.
Glucagon secretion is
- stimulated by low levels of glucose in the blood;
- inhibited by high levels, and
- inhibited by amylin.
The physiological significance of this is that glucagon functions to maintain a steady level of blood sugar level between meals.
Delta Cells
The delta cells secrete somatostatin. Somatostatin has a variety of functions. Taken together, they work to reduce the rate at which food is absorbed from the contents of the intestine. Somatostatin is also secreted by the hypothalamus and by the intestine.
Gamma Cells
The gamma cells of the islets secrete pancreatic polypeptide. No function has yet been found for this peptide of 36 amino acids.
1 - Passive processes - require no expenditure of energy by a cell:
- Simple diffusion = net movement of a substance from an area of high concentration to an area of low concentration. The rate of diffusion is influenced by:
- concentration gradient
- cross-sectional area through which diffusion occurs
- temperature
- molecular weight of a substance
- distance through which diffusion occurs
- Osmosis = diffusion of water across a semi permeable membrane (like a cell membrane) from an area of low solute concentration to an area of high solute concentration
- Facilitated diffusion = movement of a substance across a cell membrane from an area of high concentration to an area of low concentration. This process requires the use of 'carriers' (membrane proteins). In the example below, a ligand molecule (e.g., acetylcholine) binds to the membrane protein. This causes a conformational change or, in other words, an 'opening' in the protein through which a substance (e.g., sodium ions) can pass.
2 - Active processes - require the expenditure of energy by cells:
- Active transport = movement of a substance across a cell membrane from an area of low concentration to an area of high concentration using a carrier molecule
- Endo- & exocytosis - moving material into (endo-) or out of (exo-) cell in bulk form