NEET MDS Lessons
Physiology
AdenosineTriphosphate (ATP)
- Animal cells cannot directly use most forms of energy
- Most cellular processes require energy stored in the bonds of a molecule, adenosine triphosphate (ATP)
- ATP is referred to as the energy currency of the cell
It is a nucleotide, formed from:
- the base adenine (the structure with 2 rings),
- the 5 carbon sugar deoxyribose (one ring)
- 3 phosphates
Energy is stored in the bonds between the phosphates and is released when the bonds are broken
Alveolar Ventilation: is the volume of air of new air , entering the alveoli and adjacent gas exchange areas each minute . It equals to multiplying of respiratory rate by ( tidal volume - dead space).
Va = R rate X (TV- DsV)
= 12 X ( 500-150)
= 4200 ml of air.
Blood is a liquid tissue. Suspended in the watery plasma are seven types of cells and cell fragments.
- red blood cells (RBCs) or erythrocytes
- platelets or thrombocytes
- five kinds of white blood cells (WBCs) or leukocytes
- Three kinds of granulocytes
- neutrophils
- eosinophils
- basophils
- Two kinds of leukocytes without granules in their cytoplasm
- lymphocytes
- monocytes
- Three kinds of granulocytes
Conductivity :
Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another) by the excitatory -conductive system of the heart.
Excitatory conductive system of the heart involves:
1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.
2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.
There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s) .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s
3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .
4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.
Factors , affecting conductivity ( dromotropism) :
I. Positive dromotropic factors :
1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis
II. Negative dromotropic factors :
1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.
1.Rhythmicity ( Chronotropism ) : means the ability of heart to beat regularly ( due to repetitive and stable depolarization and repolarization ) . Rhythmicity of heart is a myogenic in origin , because cardiac muscles are automatically excited muscles and does not depend on the nervous stimulus to initiate excitation and then contraction . The role of nerves is limited to the regulation of the heart rate and not to initiate the beat.
There are many evidences that approve the myogenic and not neurogenic origin of the rhythmicity of cardiac muscle . For example :
- transplanted heart continues to beat regularly without any nerve supply.
- Embryologically the heart starts to beat before reaching any nerves to them.
- Some drugs that paralyze the nerves ( such as cocaine ) do not stop the heart in given doses.
Spontaneous rhythmicity of the cardiac muscle due to the existence of excitatory - conductive system , which is composed of self- exciting non-contractile cardiac muscle cells . The SA node of the mentioned system excites in a rate , that is the most rapid among the other components of the system ( 110 beats /minute ) , which makes it the controller or ( the pacemaker ) of the cardiac rhythm of the entire heart.
Mechanism , responsible for self- excitation in the SA node and the excitatory conductive system is due to the following properties of the cell membrane of theses cells :
1- Non-gated sodium channels
2- Decreased permeability to potassium
3- existence of slow and fast calcium channels.
These properties enable the cations ( sodium through the none-gated sodium voltage channels , calcium through calcium slow channels) to enter the cell and depolarize the cell membrane without need for external stimulus.
The resting membrane potential of non-contractile cardiac cell is -55 - -60 millivolts ( less than that of excitable nerve cells (-70) ) .
The threshold is also less negative than that of nerve cells ( -40 millivolts ).
The decreased permeability to potassium from its side decrease the eflux of potassium during the repolarization phase of the pacemaker potential . All of these factors give the pacemaker potential its characteristic shape
Repeating of the pacemaker potential between the action potentials of contractile muscle cells is the cause of spontaneous rhythmicity of cardiac muscle cells.
Factors , affecting the rhythmicity of the cardiac muscle :
I. Factors that increase the rate ( positive chronotropic factors) :
1. sympathetic stimulation : as its neurotransmitter norepinephrine increases the membrane permeability to sodium and calcium.
2. moderate warming : moderate warming increases temperature by 10 beats for each 1 Fahrenheit degree increase in body temperature, this due to decrease in permeability to potassium ions in pacemaker membrane by moderate increase in temperature.
3. Catecholaminic drugs have positive chronotropic effect.
4. Thyroid hormones : have positive chronotropic effect , due to the fact that these drugs increase the sensitivity of adrenergic receptors to adrenaline and noreadrenaline .
5. mild hypoxia.
6. mild alkalemia : mild alkalemia decreases the negativity of the resting potential.
7. hypocalcemia.
8. mild hypokalemia
II. Factors that decrease rhythmicity ( negative chronotropic):
1.Vagal stimulation : the basal level of vagal stimulation inhibits the sinus rhythm and decrease it from 110-75 beats/ minute. This effect due to increasing the permeability of the cardiac muscle cell to potassium , which causes rapid potassium eflux , which increases the negativity inside the cardiac cells (hyperpolarization ).
2. moderate cooling
3. severe warming : due to cardiac damage , as a result of intercellular protein denaturation. Excessive cooling on the other hand decrease metabolism and stops rhythmicity.
4. Cholenergic drugs ( such as methacholine , pilocarpine..etc) have negative chronotropic effect.
5. Digitalis : these drugs causes hyperpolarization . This effect is similar to that of vagal stimulation.
6. Hypercapnia ( excessive CO2 production )
7. Acidemia.
8. hyper- and hyponatremia .
9. hyperkalemia
10. hypercalcemia
11. Typhoid or diphteria toxins.
Hemostasis - the stopping of the blood. Triggered by a ruptured vessel wall it occurs in several steps:
1) vascular spasm - most vessels will constrict strongly when their walls are damaged. This accounts for individuals not bleeding to death even when limbs are crushed. It also can help to enhance blood clotting in less severe injuries.
2) platelet plug - platelets become sticky when they contact collagen, a protein in the basement membrane of the endothelium exposed when the vessel wall is ruptured. As they stick together they can form a plug which will stem the flow of blood in minor vessels.
3) Formation of the Blood Clot:
A) release of platelet factors - as platelets stick together and to the vascular wall some are ruptured releasing chemicals such as thromboxane, PF3, ADP and other substances. These become prothrombin activators. Thromboxane also makes the platelets even stickier, and increases the vascular constriction. These reactions are self perpetuating and become a cascade which represents a positive feedback mechanism.
B) prothrombin activators : prothrombin (already in the blood) is split into smaller products including thrombin, an active protease.
C) thrombin splits soluble fibrinogen, already present in the plasma, into monomers which then polymerize to produce insoluble fibrin threads. The fibrin threads weave the platelets and other cells together to form the actual clot. This occurs within four to six minutes when the injury is severe and up to 15 minutes when it is not. After 15 minutes the clot begins to retract as the fibrin threads contract, pulling the broken edges of the injury together and smoothing the surface of the clot causing the chemical processes to cease. Eventually the clot will dissolve due to enzymes such as plasmin also present in the blood.
The extrinsic pathway: when tissues are damaged the damaged cells release substances called tissue thromboplastin which also acts as a prothrombin activator. This enhances and speeds coagulation when tissue damage is involved.
Anti-thrombin III - this factor helps to prevent clotting when no trigger is present by removing any thrombin present. Its function is magnified many times when heparin is present. Therefore heparin is used clinically as a short-term anticoagulant.
Vitamin K - stimulates the production of clotting factors including prothrombin and fibrinogen in the liver. This vitamin is normally produced by bacteria in the colon. Coumarin (or coumadin) competes with Vitamin K in the liver and is used clinically for long-term suppression of clotting.
Several factors important to clotting are known to be absent in forms of hemophilia. These factors are produced by specific genes which are mutated in the deficient forms. The factors are VIII, IX, and XI.
Calcium is necessary for blood clotting and its removal from the blood by complexing with citrate will prevent the blood from clotting during storage
Membrane Structure & Function
Cell Membranes
- Cell membranes are phospholipid bilayers (2 layers)
- Bilayer forms a barrier to passage of molecules in an out of cell
- Phospholipids = glycerol + 2 fatty acids + polar molecule (i.e., choline) + phosphate
- Cholesterol (another lipid) stabilizes cell membranes
- the hydrophobic tails of the phospholipids (fatty acids) are together in the center of the bilayer. This keeps them out of the water
Membranes Also Contain Proteins
- Proteins that penetrate the membrane have hydrophobic sections ~25 amino acids long
- Hydrophobic = doesn't like water = likes lipids
- Membrane proteins have many functions:
- receptors for hormones
- pumps for transporting materials across the membrane
- ion channels
- adhesion molecules for holding cells to extracellular matrix
cell recognition antigens