Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Vital Capacity: The vital capacity (VC) is the maximum volume which can be ventilated in a single breath. VC= IRV+TV+ERV. VC varies with gender, age, and body build. Measuring VC gives a device for diagnosis of respiratory disorder, and a benchmark for judging the effectiveness of treatment. (4600 ml)

Vital Capacity is reduced in restrictive disorders, but not in disorders which are purely obstructive.

The FEV1 is the % of the vital capacity which is expelled in the first second. It should be at least 75%. The FEV1 is reduced in obstructive disorders.

Both VC and the FEV1 are reduced in disorders which are both restrictive and obstructive

Oxygen is present at nearly 21% of ambient air. Multiplying .21 times 760 mmHg (standard pressure at sea level) yields a pO2 of about 160. Carbon dioxide is .04% of air and its partial pressure, pCO2, is .3.

With alveolar air having a pO2 of 104 and a pCO2 of 40. So oxygen diffuses into the alveoli from inspired air and carbon dioxide diffuses from the alveoli into air which will be expired. This causes the levels of oxygen and carbon dioxide to be intermediate in expired air when compared to inspired air and alveolar air. Some oxygen has been lost to the alveolus, lowering its level to 120, carbon dioxide has been gained from the alveolus raising its level to 27.

Likewise a concentration gradient causes oxygen to diffuse into the blood from the alveoli and carbon dioxide to leave the blood. This produces the levels seen in oxygenated blood in the body. When this blood reaches the systemic tissues the reverse process occurs restoring levels seen in deoxygenated blood.

Control of processes in the stomach:

The stomach, like the rest of the GI tract, receives input from the autonomic nervous system. Positive stimuli come from the parasympathetic division through the vagus nerve. This stimulates normal secretion and motility of the stomach. Control occurs in several phases:

Cephalic phase stimulates secretion in anticipation of eating to prepare the stomach for reception of food. The secretions from cephalic stimulation are watery and contain little enzyme or acid.

Gastric phase of control begins with a direct response to the contact of food in the stomach and is due to stimulation of pressoreceptors in the stomach lining which result in ACh and histamine release triggered by the vagus nerve. The secretion and motility which result begin to churn and liquefy the chyme and build up pressure in the stomach. Chyme surges forward as a result of muscle contraction but is blocked from entering the duodenum by the pyloric sphincter. A phenomenon call retropulsion occurs in which the chyme surges backward only to be pushed forward once again into the pylorus. The presence of this acid chyme in the pylorus causes the release of a hormone called gastrin into the bloodstream. Gastrin has a positive feedback effect on the motility and acid secretion of the stomach. This causes more churning, more pressure, and eventually some chyme enters the duodenum.

Intestinal phase of stomach control occurs. At first this involves more gastrin secretion from duodenal cells which acts as a "go" signal to enhance the stomach action already occurring. But as more acid chyme enters the duodenum the decreasing pH inhibits gastrin secretion and causes the release of negative or "stop" signals from the duodenum.

These take the form of chemicals called enterogastrones which include GIP (gastric inhibitory peptide). GIP inhibits stomach secretion and motility and allows time for the digestive process to proceed in the duodenum before it receives more chyme. The enterogastric reflex also reduces motility and forcefully closes the pyloric sphincter. Eventually as the chyme is removed, the pH increases and gastrin and the "go" signal resumes and the process occurs all over again. This series of "go" and "stop" signals continues until stomach emptying is complete.

COPD and Cancer

A.    Chronic Obstructive Pulmonary Disease (COPD)

1.    Common features of COPD

a.    almost all have smoking history
b.    dyspnea - chronic "gasping" for air
c.    frequent coughing and infections
d.    often leads to respiratory failure

2.    obstructive emphysema - usually results from smoking

a.    enlargement & deterioration of alveoli
b.    loss of elasticity of the lungs
c.    "barrel chest" from bronchiole opening during inhalation & constriction during exhalation

3.    chronic bronchitis - mucus/inflammation of mucosa

B.    Lung Cancer

1.    squamous cell carcinoma (20-40%) - epithelium of the bronchi and bronchioles
2.    adenocarcinoma (25-35%) - cells of bronchiole glands and cells of the alveoli
3.    small cell carcinoma (10-20%) - special lymphocyte-like cells of the bronchi
4.    90% of all lung cancers are in people who smoke or have smoked 
 

Heart Failure : Heart failure is inability of the heart to pump the enough amount of blood needed to sustain the needs of organism .
It is usually called congestive heart failure ( CHF) .

To understand the pathophysiology  of the heart failure ,  lets compare it with the physiology of the cardiac output :
Cardiac output =Heart rate X stroke volume

Stroke volume is determined by three determinants : Preload ( venous return ) , contractility , and afterload    (peripheral resistance ) . Any disorder of these factors will reduce the ability of the heart to pump blood .

Preload : Any factor that decrease the venous return , either by decreasing the intravenous pressure or increasing the intraatrial pressure will lead to heart failure .

Contractility : Reducing the power of contraction such as in  myocarditis , cardiomyopathy , preicardial tamponade ..etc , will lead to heart failure .

Afterload : Any factor that may increase the peripheral resistance such as hypertension , valvular diseases of the heart may cause heart failure.

Pathophysiology : When the heart needs to contract more to meet the increased demand , compensatory mechanisms start to develope to enhance the power of contractility  . One of these mechanism is increasing heart rate , which will worsen the situation because this will increase the demands of the myocardial cells themselves . The other one is hypertrophy of the cardiac muscle which may compensate the failure temporarily but then the hypertrophy will be an additional load as the fibers became stiff  .

The stroke volume will be reduced , the intraventricular pressure will increase and consequently the intraatrial pressure and then the venous pressure . This will lead to decrease reabsorption of water from the interstitium ( see microcirculation) and then leads to developing of edema ( Pulmonary edema if the failure is left , and systemic edema if the failure is right) .
 

Water: comprises 60 - 90% of most living organisms (and cells) important because it serves as an excellent solvent & enters into many metabolic reactions

  • Intracellular (inside cells) = ~ 34 liters
  • Interstitial (outside cells) = ~ 13 liters
  • Blood plasma = ~3 liters

40% of blood is red blood cells (RBCs)

plasma is similar to interstitial fluid, but contains plasma proteins

serum = plasma with clotting proteins removed

intracellular fluid is very different from interstitial fluid (high K concentration instead of high Na concentration, for example)

  • Capillary walls (1 cell thick) separate blood from interstitial fluid
  • Cell membranes separate intracellular and interstitial fluids
  • Loss of about 30% of body water is fatal

 

Ions = atoms or molecules with unequal numbers of electrons and protons:

  • found in both intra- & extracellular fluid
  • examples of important ions include sodium, potassium, calcium, and chloride

Ions (Charged Atoms or Molecules) Can Conduct Electricity

  • Giving up electron leaves a + charge (cation)
  • Taking on electron produces a - charge (anion)
  • Ions conduct electricity
  • Without ions there can be no nerves or excitability
    • Na+ and K+ cations  
    • Ca2+ and Mg2+ cations  control metabolism and trigger muscle contraction and secretion of hormones and transmitters

Na+ & K+ are the Major Cations in Biological Fluids

  • High K+ in cells, high Na+ outside
  • Ion gradients maintained by Na pump (1/3 of basal metabolism)
  • Think of Na+ gradient as a Na+ battery- stored electrical energy
  • K+ gradient forms a K+ battery
  • Energy stored in Na+ and K+ batteries can be tapped when ions flow
  • Na+ and K+ produce action potential of excitable cells

The Types of muscle cells. There are three types, red, white, and intermediate.

White Fibers

Fast twitch

Large diameter, used for speed and strength.

Depends on the phosphagen system and on glycolysis-lactic acid.

Stores glycogen for conversion to glucose.

Fewer blood vessels.

Little or no myoglobin.

Red Fibers

Slow twitch

Small diameter, used for endurance.

Depends on aerobic metabolism.

Utilize fats as well as glucose.

Little glycogen storage.

Many blood vessels and much myoglobin give this muscle its reddish appearance.

 

Intermediate Fibers: sometimes called "fast twitch red", these fibers have faster action but rely more on aerobic metabolism and have more endurance. Most muscles are mixtures of the different types. Muscle fiber types and their relative abundance cannot be varied by training, although there is some evidence that prior to maturation of the muscular system the emphasis on certain activities can influence their development

Glomerular filtration

Kidneys receive about 20% of cardiac output , this is called Renal Blood Flow (RBF) which is approximatley 1.1 L of blood. Plasma in this flow is about 625 ml . It is called Renal Plasma Flow (RPF) .
About 20 % of Plasma entering the glomerular capillaries is filtered into the Bowman`s capsule .
Glomerular filtration rate is about 125 ml/min ( which means 7.5 L/hr and thus 180 L/day) This means that the kidney filters about 180 liters of plasma every day.

The urine flow is about 1ml/min ( about 1.5 liter /day) This means that kidney reabsorbs about 178.5 liters every day .

Filtration occurs through the filtration unit , which includes :

1- endothelial cells of glomerular capillaries , which are fenestrated . Fenestrae are quite small so they prevent filtration of blood cells and most of plasma proteins .

2- Glomerular basement membrane : contains proteoglycan that is negatively charged and repels the negatively charged plasma proteins that may pass the fenestrae due to their small molecular weight like albumin . so the membrane plays an important role in impairing filtration of albumin .

3- Epithelial cells of Bowman`s capsule that have podocytes , which interdigitate to form slits .


Many forces drive the glomerular filtration , which are :

1- Hydrostatic pressure of the capillary blood , which favours filtration . It is about 55 mmHg .

2- Oncotic pressure of the plasma proteins in the glomerular capillary ( opposes filtration ) . It is about 30 mm Hg .

3- Hydrostatic pressure of the Bowman`s capsule , which also opposes filtration. It is about 15 mmHg .

The net pressure is as follows :

Hydrostatic pressure of glomerular capillaries - ( Oncotic pressure of glomerular capillaries + Hydrostatic pressure of the Bowman capsule):
55-(35+10)
=55-45
=10 mmHg .

Te glomerular filtration rate does not depend only on the net pressure , but also on an other value , known as filtration coefficient ( Kf) . The later depends on the surface area of the glomerular capillaries and the hydraulic conductivity of the glomerular capillaries.
 

Explore by Exams