NEET MDS Lessons
Physiology
There are three types of muscle tissue, all of which share some common properties:
- Excitability or responsiveness - muscle tissue can be stimulated by electrical, physical, or chemical means.
- contractility - the response of muscle tissue to stimulation is contraction, or shortening.
- elasticity or recoil - muscles have elastic elements (later we will call these their series elastic elements) which cause them to recoil to their original size.
- stretchability or extensibility - muscles can also stretch and extend to a longer-than-resting length.
The three types of muscle: skeletal, cardiac, and visceral (smooth) muscle.
Skeletal muscle
It is found attached to the bones for movement.
cells are long multi-nucleated cylinders.
The cells may be many inches long but vary in diameter, averaging between 100 and 150 microns.
All the cells innervated by branches from the same neuron will contract at the same time and are referred to as a motor unit.
Skeletal muscle is voluntary because the neurons which innervate it come from the somatic or voluntary branch of the nervous system.
That means you have willful control over your skeletal muscles.
Skeletal muscles have distinct stripes or striations which identify them and are related to the organization of protein myofilaments inside the cell.
Cardiac muscle
This muscle found in the heart.
It is composed of much shorter cells than skeletal muscle which branch to connect to one another.
These connections are by means of gap junctions called intercalated disks which allow an electrochemical impulse to pass to all the connected cells.
This causes the cells to form a functional network called a syncytium in which the cells work as a unit. Many cardiac muscle cells are myogenic which means that the impulse arises from the muscle, not from the nervous system. This causes the heart muscle and the heart itself to beat with its own natural rhythm.
But the autonomic nervous system controls the rate of the heart and allows it to respond to stress and other demands. As such the heart is said to be involuntary.
Visceral muscle is found in the body's internal organs and blood vessels.
It is usually called smooth muscle because it has no striations and is therefore smooth in appearance. It is found as layers in the mucous membranes of the respiratory and digestive systems.
It is found as distinct bands in the walls of blood vessels and as sphincter muscles.
Single unit smooth muscle is also connected into a syncytium similar to cardiac muscle and is also partly myogenic. As such it causes continual rhythmic contractions in the stomach and intestine. There and in blood vessels smooth muscle also forms multiunit muscle which is stimulated by the autonomic nervous system. So smooth muscle is involuntary as well
Biological Functions are Extremely Sensitive to pH
- H+ and OH- ions get special attention because they are very reactive
- Substance which donates H+ ions to solution = acid
- Substance which donates OH- ions to solution = base
- Because we deal with H ions over a very wide range of concentration, physiologists have devised a logarithmic unit, pH, to deal with it
- pH = - log [H+]
- [H+] is the H ion concentration in moles/liter
- Because of the way it is defined a high pH indicates low H ion and a low pH indicates high H ion- it takes a while to get used to the strange definition
- Also because of the way it is defined, a change of 1 pH unit means a 10X change in the concentration of H ions
- If pH changes by 2 units the H+ concentration changes by 10 X 10 = 100 times
- Human blood pH is 7.4
- Blood pH above 7.4 = alkalosis
- Blood pH below 7.4 = acidosis
- Body must get rid of ~15 moles of potential acid/day (mostly CO2)
- CO2 reacts with water to form carbonic acid (H2CO3)
- Done mostly by lungs & kidney
- In neutralization H+ and OH- react to form water
- If the pH changes charges on molecules also change, especially charges on proteins
- This changes the reactivity of proteins such as enzymes
- Large pH changes occur as food passes through the intestines.
Cells, cytoplasm, and organelles:
- Cytoplasm consists of a gelatinous solution and contains microtubules (which serve as a cell's cytoskeleton) and organelles
- Cells also contain a nucleus within which is found DNA (deoxyribonucleic acid) in the form of chromosomes plus nucleoli (within which ribosomes are formed)
- Organelles include:
- Endoplasmic reticulum : 2 forms: smooth and rough; the surface of rough ER is coated with ribosomes; the surface of smooth ER is not , Functions include: mechanical support, synthesis (especially proteins by rough ER), and transport
- Golgi complex consists of a series of flattened sacs (or cisternae) functions include: synthesis (of substances likes phospholipids), packaging of materials for transport (in vesicles), and production of lysosomes
- Lysosome : membrane-enclosed spheres that contain powerful digestive enzymes , functions include destruction of damaged cells & digestion of phagocytosed materials
- Mitochondria : have double-membrane: outer membrane & highly convoluted inner membrane
- inner membrane has folds or shelf-like structures called cristae that contain elementary particles; these particles contain enzymes important in ATP production
- primary function is production of adenosine triphosphate (ATP)
- Ribosome-:composed of rRNA (ribosomal RNA) & protein , primary function is to produce proteins
- Centrioles :paired cylindrical structures located near the nucleas , play an important role in cell division
- Flagella & cilia - hair-like projections from some human cells
- cilia are relatively short & numerous (e.g., those lining trachea)
- a flagellum is relatively long and there's typically just one (e.g., sperm)
-
- Villi Projections of cell membrane that serve to increase surface area of a cell (which is important, for example, for cells that line the intestine)
Hemostasis - the stopping of the blood. Triggered by a ruptured vessel wall it occurs in several steps:
1) vascular spasm - most vessels will constrict strongly when their walls are damaged. This accounts for individuals not bleeding to death even when limbs are crushed. It also can help to enhance blood clotting in less severe injuries.
2) platelet plug - platelets become sticky when they contact collagen, a protein in the basement membrane of the endothelium exposed when the vessel wall is ruptured. As they stick together they can form a plug which will stem the flow of blood in minor vessels.
3) Formation of the Blood Clot:
A) release of platelet factors - as platelets stick together and to the vascular wall some are ruptured releasing chemicals such as thromboxane, PF3, ADP and other substances. These become prothrombin activators. Thromboxane also makes the platelets even stickier, and increases the vascular constriction. These reactions are self perpetuating and become a cascade which represents a positive feedback mechanism.
B) prothrombin activators : prothrombin (already in the blood) is split into smaller products including thrombin, an active protease.
C) thrombin splits soluble fibrinogen, already present in the plasma, into monomers which then polymerize to produce insoluble fibrin threads. The fibrin threads weave the platelets and other cells together to form the actual clot. This occurs within four to six minutes when the injury is severe and up to 15 minutes when it is not. After 15 minutes the clot begins to retract as the fibrin threads contract, pulling the broken edges of the injury together and smoothing the surface of the clot causing the chemical processes to cease. Eventually the clot will dissolve due to enzymes such as plasmin also present in the blood.
The extrinsic pathway: when tissues are damaged the damaged cells release substances called tissue thromboplastin which also acts as a prothrombin activator. This enhances and speeds coagulation when tissue damage is involved.
Anti-thrombin III - this factor helps to prevent clotting when no trigger is present by removing any thrombin present. Its function is magnified many times when heparin is present. Therefore heparin is used clinically as a short-term anticoagulant.
Vitamin K - stimulates the production of clotting factors including prothrombin and fibrinogen in the liver. This vitamin is normally produced by bacteria in the colon. Coumarin (or coumadin) competes with Vitamin K in the liver and is used clinically for long-term suppression of clotting.
Several factors important to clotting are known to be absent in forms of hemophilia. These factors are produced by specific genes which are mutated in the deficient forms. The factors are VIII, IX, and XI.
Calcium is necessary for blood clotting and its removal from the blood by complexing with citrate will prevent the blood from clotting during storage
4. Emphysema
1. Permanent enlargement of airways with distension of alveolar walls
Thickened Bronchial Submucosa, Edema & Cellular Infiltration (loss of elasticity), Dilation of Air spaces, due to destruction of alveolar walls (Air trapped by obstruction)
2. Lower Respiratory tree destruction
Respiratory Bronchioles, Alveolar ducts, & Alveolar sacs
Types of Emphysema:
1. Centrilobular (Centriacinar) = Respiratory Bronchioles
Rarely seen in non Smokers, More in Men than Women, Found in Smokers with Bronchitis
2. Panlobular (Panacinar)
Hereditary, Single autosomal recessive gene. Deficient in 1-globulin (1-antitrypsin), Protects respiratory tract from neutrophil elastase (Enzyme that distroys lung connective tissue) , Aged persons, Results from Bronchi or Bronchiolar constriction
NOTE: Smoking = Leading cause of Bronchitis, Emphysema
Serum Lipids
|
LIPID |
Typical values (mg/dl) |
Desirable (mg/dl) |
|
Cholesterol (total) |
170–210 |
<200 |
|
LDL cholesterol |
60–140 |
<100 |
|
HDL cholesterol |
35–85 |
>40 |
|
Triglycerides |
40–160 |
<160 |
- Total cholesterol is the sum of
- HDL cholesterol
- LDL cholesterol and
- 20% of the triglyceride value
- Note that
- high LDL values are bad, but
- high HDL values are good.
- Using the various values, one can calculate a
cardiac risk ratio = total cholesterol divided by HDL cholesterol - A cardiac risk ratio greater than 7 is considered a warning.
DNA (Deoxyribonucleic acid) - controls cell function via transcription and translation (in other words, by controlling protein synthesis in a cell)
Transcription - DNA is used to produce mRNA
Translation - mRNA then moves from the nucleus into the cytoplasm & is used to produce a protein . requires mRNA, tRNA (transfer RNA), amino acids, & a ribosome
tRNA molecule
- sequence of amino acids in a protein is determined by sequence of codons (mRNA). Codons are 'read' by anticodons of tRNAs & tRNAs then 'deliver' their amino acid.
- Amino acids are linked together by peptide bonds (see diagram to the right)
- As mRNA slides through ribosome, codons are exposed in sequence & appropriate amino acids are delivered by tRNAs. The protein (or polypeptide) thus grows in length as more amino acids are delivered.
- The polypeptide chain then 'folds' in various ways to form a complex three-dimensional protein molecule that will serve either as a structural protein or an enzyme.