Talk to us?

Physiology - NEETMDS- courses
NEET MDS Lessons
Physiology

Normal Chemical Composition of Urine

Urine is an aqueous solution of greater than 95% water, with a minimum of these remaining constituents, in order of decreasing concentration:

Urea 9.3 g/L.

Chloride 1.87 g/L.

Sodium 1.17 g/L.

Potassium 0.750 g/L.

Creatinine 0.670 g/L .

Other dissolved ions, inorganic and organic compounds (proteins, hormones, metabolites).

Urine is sterile until it reaches the urethra, where epithelial cells lining the urethra are colonized by facultatively anaerobic gram-negative rods and cocci. Urea is essentially a processed form of ammonia that is non-toxic to mammals, unlike ammonia, which can be highly toxic. It is processed from ammonia and carbon dioxide in the liver.

1) Storage - the stomach allows a meal to be consumed and the materials released incrementally into the duodenum for digestion. It may take up to four hours for food from a complete meal to clear the stomach. 
2) Chemical digestion - pepsin begins the process of protein digestion cleaving large polypeptides into shorter chains . 
3) Mechanical digestion - the churning action of the muscularis causes liquefaction and mixing of the contents to produce acid chyme. 
4) Some absorption - water, electrolytes, monosaccharides, and fat soluble molecules including alcohol are all absorbed in the stomach to some degree.

  1. PATHOPHYSIOLOGY OF THE CONDUCTION SYSTEM

  2. Cardiac arrhythmias = deviation from normal rate, rhythm

     

    1. Heart block (types) = conduction system damage
      1. Complete Heart Block = 3rd degree block
        1. idioventricular beat (35-45/min)
        2. Atria at normal sinus rhythm
        3. Periods of asystole (dizziness, fainting)
        4. Causes = myocardial infarction of ventricular septum, surgical correction of interseptal defects, drugs
      2. Incomplete Heart Block = 2nd degree block
        1. Not all atrial beats reach ventricle
        2. Ventricular beat every 2nd, 3rd, etc. atrial beat, (2:1 block, 3:1 block)
      3. Incomplete Heart Block = 1st degree block
        1. All atrial beats reach ventricle
        2. PR interval abnormally long = slower conduction
      4. Bundle branch blocks (right or left)
        1. Impulses travel down one side and cross over
        2. Ventricular rate normal, QRS prolonged or abnormal
    2. Fibrillation
      1. Asynchronous contractions = twitching movements
      2. Loss of synchrony = little to No output
      3. Atrial Fibrillation
        1. Irregular ventricular beat & depressed pumping efficiency
        2. Atrial beat = 125 - 150/min, pulse feeble = 60 - 70/min
        3. Treatment = Digitalis - reduces rate of ventricular contraction, reduces pulse deficit
      4. Ventricular Fibrillation
        1. Almost no blood pumped to systemic system
        2. ECG = extremely bizarre
        3. Several minutes = fatal
        4. Treatment = defibrillation, cardiac massage can maintain some cardiac output

The pituitary gland is pea-sized structure located at the base of the brain. In humans, it consists of two lobes:

  • the Anterior Lobe and
  • the Posterior Lobe

The Anterior Lobe

The anterior lobe contains six types of secretory cells All of them secrete their hormone in response to hormones reaching them from the hypothalamus of the brain.

Thyroid Stimulating Hormone (TSH)

TSH (also known as thyrotropin) is a glycoprotein The secretion of TSH is

  • stimulated by the arrival of thyrotropin releasing hormone (TRH) from the hypothalamus.
  • inhibited by the arrival of somatostatin from the hypothalamus.

 TSH stimulates the thyroid gland to secrete its hormone thyroxine (T4).

Some develop antibodies against their own TSH receptors making more T4 causing hyperthyroidism. The condition is called thyrotoxicosis or Graves' disease.

Hormone deficiencies

A deficiency of TSH causes hypothyroidism: inadequate levels of T4 (and thus of T3 )..

Follicle-Stimulating Hormone (FSH)

FSH is a heterodimeric glycoprotein Synthesis and release of FSH is triggered by the arrival from the hypothalamus of gonadotropin-releasing hormone (GnRH).

FSH in females :In sexually-mature females, FSH (assisted by LH) acts on the follicle to stimulate it to release estrogens.

FSH in males :In mature males, FSH acts on spermatogonia stimulating (with the aid of testosterone) the production of sperm.

Luteinizing Hormone (LH)

LH is synthesized within the same pituitary cells as FSH and under the same stimulus (GnRH). It is also a heterodimeric glycoprotein

LH in females

In sexually-mature females, LH

  • stimulates the follicle to secrete estrogen in the first half of the menstrual cycle
  • a surge of LH triggers the completion of meiosis I of the egg and its release (ovulation) in the middle of the cycle
  • stimulates the now-empty follicle to develop into the corpus luteum, which secretes progesterone during the latter half of the menstrual cycle.

LH in males

LH acts on the interstitial cells (also known as Leydig cells) of the testes stimulating them to synthesize and secrete the male sex hormone, testosterone.

LH in males is also known as interstitial cell stimulating hormone (ICSH).

Prolactin (PRL)

Prolactin is a protein of 198 amino acids. During pregnancy it helps in the preparation of the breasts for future milk production. After birth, prolactin promotes the synthesis of milk.

Prolactin secretion is

  • stimulated by TRH
  • repressed by estrogens and dopamine.

Growth Hormone (GH)

  • Human growth hormone (also called somatotropin) is a protein
  • The GH-secreting cells are stimulated to synthesize and release GH by the intermittent arrival of growth hormone releasing hormone (GHRH) from the hypothalamus. GH promotes body growth

In Child

  • hyposecretion of GH produces dwarfism
  • hypersecretion leads to gigantism

In adults, a hypersecretion of GH leads to acromegaly.

ACTH — the adrenocorticotropic hormone

ACTH acts on the cells of the adrenal cortex, stimulating them to produce

  • glucocorticoids, like cortisol
  • mineralocorticoids, like aldosterone
  • androgens (male sex hormones, like testosterone

Hypersecretion of ACTH cause of Cushing's disease.

Tubular secretion:

Involves transfer of substances from peritubular capillaries into the tubular lumen. It  involves transepithelial transport in a direction opposite to that of tubular absorption.

Renal tubules can selectively add some substances that have not been filtered to the substances that already have been filtered via tubular secretion.

Tubular secretion mostly function to eliminate foreign  organic ions, hydrogen ions ( as a contribution to acid base balance ), potassium ions ( as a contribution to maintaining optimal plasma K+ level to assure normal proceeding of neural and muscular functions), and urea.
Here we will focus on K+ secretion and will later discuss H+ secretion in acid base balance, while urea secretion will be discussed in water balance.

K+ is filtered in glomerular capillaries and then reabsorbed in proximal convoluted tubules as well as in thick ascending limb of loop of Henley ( Na-2Cl-K symporter)

K+ secretion takes place in collecting tubules (distal nephron) . There are two types of cells in distal nephron:

- Principal cells that reabsorb sodium and secrete K+ .
- Intercalated cells that reabsorb K+ in exchange with H+.


Mechanism of secretion of K+ in principal cells : Two steps


- K+ enters tubular cells by Na/K ATPase on the basolateral membrane.
- K+ leaves the tubular cells via K+ channels in apical membrane.


Aldosterone is a necessary regulatory factor.

If there is increased level of K+ in plasma,excessive K+ is secreted , some of which is reabsorbed back to the plasma in exchange with H+ via the intercalated cells.        

Platelets

Platelets are cell fragments produced from megakaryocytes.

Blood normally contains 150,000 to 350,000 per microliter (µl). If this value should drop much below 50,000/µl, there is a danger of uncontrolled bleeding. This is because of the essential role that platelets have in blood clotting.

When blood vessels are damaged, fibrils of collagen are exposed.

  • von Willebrand factor links the collagen to platelets forming a plug of platelets there.
  • The bound platelets release ADP and thromboxane A2 which recruit and activate still more platelets circulating in the blood.
  • (This role of thromboxane accounts for the beneficial effect of low doses of aspirin a cyclooxygenase inhibitor in avoiding heart attacks.)

ReoPro is a monoclonal antibody directed against platelet receptors. It inhibits platelet aggregation and appears to reduce the risk that "reamed out" coronary arteries (after coronary angioplasty) will plug up again.

Hypoxia

  • Hypoxia is tissue oxygen deficiency
  • Brain is the most sensitive tissue to hypoxia: complete lack of oxygen can cause unconsciousness in 15 sec and irreversible damage within 2 min.
  • Oxygen delivery and use can be interrupted at several sites

 

Type of
Hypoxia

O2 Uptake
in Lungs

Hemoglobin

Circulation

 Tissue O2 Utilization

 Hypoxic

 Low

Normal

Normal

Normal

 Anemic

 Normal

 Low

Normal

Normal

 Ischemic

 Normal

Normal

 Low

Normal

 Histotoxic

 Normal

Normal

Normal

 Low

  • Causes:
    • Hypoxic: high altitude, pulmonary edema, hypoventilation, emphysema, collapsed lung
    • Anemic: iron deficiency, hemoglobin mutations, carbon monoxide poisoning
    • Ischemic: shock, heart failure, embolism
    • Histotoxic: cyanide poisoning (inhibits mitochondria)

 

  • Carbon monoxide (CO) poisoning:
    • CO binds to the same heme Fe atoms that O2 binds to
    • CO displaces oxygen from hemoglobin because it has a 200X greater affinity for hemoglobin.
    • Treatment for CO poisoning: move victim to fresh air. Breathing pure O2 can give faster removal of CO

 

  • Cyanide poisoning:
    • Cyanide inhibits the cytochrome oxidase enzyme of mitochondria
    • Two step treatment for cyanide poisoning:
      • 1) Give nitrites
        • Nitrites convert some hemoglobin to methemoglobin. Methemoglobin pulls cyanide away from mitochondria.
      • 2) Give thiosulfate.
        • Thiosulfate converts the cyanide to less poisonous thiocyanate.

Explore by Exams