Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Physiology

  • Sensory:
    • Somatic (skin & muscle) Senses:
      Postcentral gyrus (parietal lobe). This area senses touch, pressure, pain, hot, cold, & muscle position. The arrangement is upside-down (head below, feet above) and is switched from left to right (sensations from the right side of the body are received on the left side of the cortex). Some areas (face, hands) have many more sensory and motor nerves than others. A drawing of the body parts represented in the postcentral gyrus, scaled to show area, is called a homunculus .
    • Vision:
      Occipital lobe, mostly medial, in calcarine sulcus. Sensations from the left visual field go to the right cortex and vice versa. Like other sensations they are upside down. The visual cortex is very complicated because the eye must take into account shape, color and intensity.
    • Taste:
      Postcentral gyrus, close to lateral sulcus. The taste area is near the area for tongue somatic senses.
    • Smell:
       The olfactory cortex is not as well known as some of the other areas. Nerves for smell go to the olfactory bulb of the frontal cortex, then to other frontal cortex centers- some nerve fibers go directly to these centers, but others come from the thalamus like most other sensory nerves
    • Hearing:
      Temporal lobe, near junction of the central and lateral sulci. Mostly within the lateral sulcus. There is the usual crossover and different tones go to different parts of the cortex. For complex patterns of sounds like speech and music other areas of the cortex become involved.
  • Motor:
    • Primary Motor ( Muscle Control):
      Precentral gyrus (frontal lobe). Arranged like a piano keyboard: stimulation in this area will cause individual muscles to contract. Like the sensory cortex, the arrangement is in the form of an upside-down homunculus. The fibers are crossed- stimulation of the right cortex will cause contraction of a muscle on the left side of the body.
    • Premotor (Patterns of Muscle Contraction):
      Frontal lobe in front of precentral gyrus. This area helps set up learned patterns of muscle contraction (think of walking or running which involve many muscles contracting in just the right order).
    • Speech-Muscle Control:
      Broca's area, frontal lobe, usually in left hemisphere only. This area helps control the patterns of muscle contraction necessary for speech. Disorders in speaking are called aphasias.
  • Perception:
    • Speech- Comprehension:
      Wernicke's area, posterior end of temporal lobe, usually left hemisphere only. Thinking about words also involves areas in the frontal lobe.
    • Speech- Sound/Vision Association:
      Angular gyrus, , makes connections between sounds and shapes of words

Bleeding Disorders

A deficiency of a clotting factor can lead to uncontrolled bleeding.

The deficiency may arise because

  • not enough of the factor is produced or
  • a mutant version of the factor fails to perform properly.

Examples:

  • von Willebrand disease (the most common)
  • hemophilia A for factor 8 deficiency
  • hemophilia B for factor 9 deficiency.
  • hemophilia C for factor 11 deficiency

In some cases of von Willebrand disease, either a deficient level or a mutant version of the factor eliminates its protective effect on factor 8. The resulting low level of factor 8 mimics hemophilia A.

The Lymphatic System

Functions of the lymphatic system:

1) to maintain the pressure and volume of the extracellular fluid by returning excess water and dissolved substances from the interstitial fluid to the circulation.

2) lymph nodes and other lymphoid tissues are the site of clonal production of immunocompetent  lymphocytes and macrophages in the specific immune response.
 

Filtration forces water and dissolved substances from the capillaries into the interstitial fluid. Not all of this water is returned to the blood by osmosis, and excess fluid is picked up by lymph capillaries to become lymph. From lymph capillaries fluid flows into lymph veins (lymphatic vessels) which virtually parallel the circulatory veins and are structurally very similar to them, including the presence of semilunar valves.

The lymphatic veins flow into one of two lymph ducts. The right lymph duct drains the right arm, shoulder area, and the right side of the head and neck. The left lymph duct, or thoracic duct, drains everything else, including the legs, GI tract and other abdominal organs, thoracic organs, and the left side of the head and neck and left arm and shoulder.

These ducts then drain into the subclavian veins on each side where they join the internal jugular veins to form the brachiocephalic veins.

Lymph nodes lie along the lymph veins successively filtering lymph. Afferent lymph veins enter each node, efferent veins lead to the next node becoming afferent veins upon reaching it.

Lymphokinetic motion (flow of the lymph) due to:

1) Lymph flows down the pressure gradient.

2) Muscular and respiratory pumps push lymph forward due to function of the semilunar valves.

 

Other lymphoid tissue: 

        1. Lymph nodes: Lymph nodes are small encapsulated organs located along the pathway of lymphatic vessels. They vary from about 1 mm to 1 to 2 cm in diameter and are widely distributed throughout the body, with large concentrations occurring in the areas of convergence of lymph vessels. They serve as filters through which lymph percolates on its way to the blood. Antigen-activated lymphocytes differentiate and proliferate by cloning in the lymph nodes. 

        2. Diffuse Lymphatic Tissue and Lymphatic nodules: The alimentary canal, respiratory passages, and genitourinary tract are guarded by accumulations of lymphatic tissue that are not enclosed by a capsule (i.e. they are diffuse) and are found in  connective tissue beneath the epithelial mucosa. These cells intercept foreign antigens and then travel to lymph nodes to undergo differentiation and proliferation. Local concentrations of lymphocytes in these systems and other areas are called lymphatic nodules. In general these are single and random but are more concentrated in the GI tract in the ileum, appendix, cecum, and tonsils. These are collectively called the Gut Associated Lymphatic Tissue (GALT). MALT (Mucosa Associated Lymphatic Tissue) includes these plus the diffuse lymph tissue in the respiratory tract. 

        3. The thymus:   The thymus is where immature lymphocytes differentiate into T-lymphocytes. The thymus is fully formed and functional at birth. Characteristic features of thymic structure persist until about puberty, when lymphocyte processing and proliferation are dramatically reduced and eventually eliminated and the thymic tissue is largely replaced by adipose tissue. The lymphocytes released by the thymus are carried to lymph nodes, spleen, and other lymphatic tissue where they form colonies. These colonies form the basis of T-lymphocyte proliferation in the specific immune response. T-lymphocytes survive for long periods and recirculate through lymphatic tissues.

        The transformation of primitive or immature lymphocytes into T-lymphocytes and their proliferation in the lymph nodes is promoted by a thymic hormone called thymosin.  Ocassionally the thymus persists and may become cancerous after puberty and and the continued secretion of thymosin and the production of abnormal T-cells may contribute to some autoimmune disorders.  Conversely, lack of thymosin may also allow inadequate immunologic surveillance and thymosin has been used experimentally to stimulate T-lymphocyte proliferation to fight lymphoma and other cancers. 

        4. The spleen: The spleen filters the blood and reacts immunologically to blood-borne antigens. This is both a morphologic (physical) and physiologic process. In addition to large numbers of lymphocytes the spleen contains specialized vascular spaces, a meshwork of reticular cells and fibers, and a rich supply of macrophages which monitor the blood.  Connective tissue forms a capsule and trabeculae which contain myofibroblasts, which are contractile.  The human spleen holds relatively little blood compared to other mammals, but it has the capacity for contraction to release this blood into the circulation during anoxic stress. White pulp in the spleen contains lymphocytes and is equivalent to other lymph tissue,  while red pulp contains large numbers of red blood cells that it filters and degrades.

    The spleen functions in both immune and hematopoietic systems. Immune functions include: proliferation of lymphocytes, production of antibodies, removal of antigens from the blood. Hematopoietic functions include: formation of blood cells during fetal life, removal and destruction of aged, damaged and abnormal red cells and platelets, retrieval of iron from hemoglobin degradation, storage of red blood cells.

The pancreas

The pancreas consists of clusters if endocrine cells (the islets of Langerhans) and exocrine cells whose secretions drain into the duodenum.

Pancreatic fluid contains:

  • sodium bicarbonate (NaHCO3). This neutralizes the acidity of the fluid arriving from the stomach raising its pH to about 8.
  • pancreatic amylase. This enzyme hydrolyzes starch into a mixture of maltose and glucose.
  • pancreatic lipase. The enzyme hydrolyzes ingested fats into a mixture of fatty acids and monoglycerides. Its action is enhanced by the detergent effect of bile.
  • 4 zymogens— proteins that are precursors to active proteases. These are immediately converted into the active proteolytic enzymes:
    • trypsin. Trypsin cleaves peptide bonds on the C-terminal side of arginines and lysines.
    • chymotrypsin. Chymotrypsin cuts on the C-terminal side of tyrosine, phenylalanine, and tryptophan residues (the same bonds as pepsin, whose action ceases when the NaHCO3 raises the pH of the intestinal contents).
    • elastase. Elastase cuts peptide bonds next to small, uncharged side chains such as those of alanine and serine.
    • carboxypeptidase. This enzyme removes, one by one, the amino acids at the C-terminal of peptides.
  • nucleases. These hydrolyze ingested nucleic acids (RNA and DNA) into their component nucleotides.

The secretion of pancreatic fluid is controlled by two hormones:

  • secretin, which mainly affects the release of sodium bicarbonate, and
  • cholecystokinin (CCK), which stimulates the release of the digestive enzymes.

Ventilation simply means inhaling and exhaling of air from the atmospheric air into lungs and then exhaling it from the lung into the atmospheric air.
Air pressure gradient has to exist between two atmospheres to enable a gas to move from one atmosphere to an other.
 

During inspiration: the intrathoracic pressure has to be less than that of atmospheric pressure. This could be achieved by decreasing the intrathoracic pressure as follows:
 

Depending on Boyle`s law , the pressure of gas is inversely proportional to the volume of its container. So increasing the intrathoracic volume will decrease the intrathoracic pressure which will allow the atmospheric air to be inhaled (inspiration) . As decreasing the intrathoracic volume will increase the intrathoracic pressure and causes exhaling of air ( expiration)

 

So. Inspiration  could be actively achieved by the contraction of inspiratory muscles : diaphragm and intercostal muscles. While relaxation of the mentioned muscles will passively cause expiration.
 

Contraction of diaphragm will pull the diaphragm down the abdominal cavity ( will move inferiorly)  , and then increase the intrathoracic volume ( vertically)  . Contraction of external intercostal muscle will pull the ribs upward and forward which will additionally increase the intrathoracic volume ( transversely  , the net result will be increasing the intrathoracic volume and decreasing the intrathoracic pressure.
 

Relaxation of diaphragm will move it superiorly during expiration, the relaxation of external intercostal muscles will pull the ribs downward and backward , and the elastic lungs and chest wall will recoil. The net result is decreasing the intrathoracic volume and increasing intrathoracic pressure.
 

All of this occurs during quiet breathing. During forceful inspiration an accessory inspiratory muscle will be involved ( scaleni , sternocleidomastoid , and others) to increase negativity in the intrathoracic pressure more and more.
 

During forceful expiration the accessory expiratory muscles ( internal intercostal muscles and abdominal muscles ) will be involved to decrease the intrathoracic volume  more and more and then to increase  intrathoracic pressure more and more.

The pressure within the alveoli is called intralveolar  pressure . Between the two phases of respiration it is equal to the atmospheric pressure. It is decreased during inspiration ( about 1 cm H2O ) and increased during expiration ( about +1 cm H2O ) . This difference allow entering of 0.5 L of air into the lungs.

Intrapleural pressure is the pressure of thin fluid between the two pleural layers . It is a slight negative pressure. At the beginning of inspiration it is about -5 cm H2O and reachs -7.5 cm H2O at the end or inspiration.

At the beginning of expiration the intrapleural pressure is -7.5 cm H2O and reaches -5 cmH2O at the end of expiration.
The difference between intralveolar pressure and intrapleural pressure is called transpulmonary pressure.

 

 

Factors , affecting ventilation :
 

Resistance : Gradual decreasing of the diameter of respiratory airway increase the resistance to air flow.
 

Compliance : means the ease , which the lungs expand.It depends on both the elastic forces of the lungs and the elastic forces , caused by the the surface tension of the fluid, lining the alveoli.
 

Surface tension: Molecules of water have tendency to attract each other on the surface of water adjacent to air. In alveoli the surface tension caused by the fluid in the inner surface of the alveoli  may cause collapse of alveoli . The surface tension is decreased by the surfactant .

 

Surfactant is a mixture of phospholipids , proteins and ion m produced by type II pneumocytes.

Immature newborns may suffer from respiratory distress syndrome , due to lack of surfactant which is produced during the last trimester of pregnancy.
 

The elastic fibers of the thoracic wall also participate in lung compliance.

 

  • Partial Pressures of O2 and CO2 in the body (normal, resting conditions):

  • Alveoli
    • PO2 = 100 mm Hg
    • PCO2 = 40 mm Hg
  • Alveolar capillaries
    • Entering the alveolar capillaries
      • PO2 = 40 mm Hg (relatively low because this blood has just returned from the systemic circulation & has lost much of its oxygen)
      • PCO2 = 45 mm Hg (relatively high because the blood returning from the systemic circulation has picked up carbon dioxide) 
  • While in the alveolar capillaries, the diffusion of gasses occurs: oxygen diffuses from the alveoli into the blood & carbon dioxide from the blood into the alveoli.

  • Leaving the alveolar capillaries
    • PO2 = 100 mm Hg
    • PCO2 = 40 mm Hg
  • Blood leaving the alveolar capillaries returns to the left atrium & is pumped by the left ventricle into the systemic circulation. This blood travels through arteries & arterioles and into the systemic, or body, capillaries. As blood travels through arteries & arterioles, no gas exchange occurs.
    • Entering the systemic capillaries
      • PO2 = 100 mm Hg
      • PCO2 = 40 mm Hg
    • Body cells (resting conditions)
      • PO2 = 40 mm Hg
      • PCO2 = 45 mm Hg
  • Because of the differences in partial pressures of oxygen & carbon dioxide in the systemic capillaries & the body cells, oxygen diffuses from the blood & into the cells, while carbon dioxide diffuses from the cells into the blood.
    • Leaving the systemic capillaries
      • PO2 = 40 mm Hg
      • PCO2 = 45 mm Hg
  • Blood leaving the systemic capillaries returns to the heart (right atrium) via venules & veins (and no gas exchange occurs while blood is in venules & veins). This blood is then pumped to the lungs (and the alveolar capillaries) by the right ventricle.

The hepatic portal system

The capillary beds of most tissues drain into veins that lead directly back to the heart. But blood draining the intestines is an exception. The veins draining the intestine lead to a second set of capillary beds in the liver. Here the liver removes many of the materials that were absorbed by the intestine:

  • Glucose is removed and converted into glycogen.
  • Other monosaccharides are removed and converted into glucose.
  • Excess amino acids are removed and deaminated.
    • The amino group is converted into urea.
    • The residue can then enter the pathways of cellular respiration and be oxidized for energy.
  • Many nonnutritive molecules, such as ingested drugs, are removed by the liver and, often, detoxified.

The liver serves as a gatekeeper between the intestines and the general circulation. It screens blood reaching it in the hepatic portal system so that its composition when it leaves will be close to normal for the body.

Furthermore, this homeostatic mechanism works both ways. When, for example, the concentration of glucose in the blood drops between meals, the liver releases more to the blood by

  • converting its glycogen stores to glucose (glycogenolysis)
  • converting certain amino acids into glucose (gluconeogenesis).

Explore by Exams