NEET MDS Lessons
Physiology
Gonadotropin-releasing hormone (GnRH)
GnRH is a peptide of 10 amino acids. Its secretion at the onset of puberty triggers sexual development.
Primary Effects
FSH and LH Relaese
Secondary Effects
Increases estrogen and progesterone (in females)
testosterone Relaese (in males)
Growth hormone-releasing hormone (GHRH)
GHRH is a mixture of two peptides, one containing 40 amino acids, the other 44. GHRH stimulates cells in the anterior lobe of the pituitary to secrete growth hormone (GH).
Corticotropin-releasing hormone (CRH)
CRH is a peptide of 41 amino acids. Its acts on cells in the anterior lobe of the pituitary to release adrenocorticotropic hormone (ACTH) CRH is also synthesized by the placenta and seems to determine the duration of pregnancy. It may also play a role in keeping the T cells of the mother from mounting an immune attack against the fetus
Somatostatin
Somatostatin is a mixture of two peptides, one of 14 amino acids, the other of 28. Somatostatin acts on the anterior lobe of the pituitary to
- inhibit the release of growth hormone (GH)
- inhibit the release of thyroid-stimulating hormone (TSH)
Somatostatin is also secreted by cells in the pancreas and in the intestine where it inhibits the secretion of a variety of other hormones.
Antidiuretic hormone (ADH) and Oxytocin
These peptides are released from the posterior lobe of the pituitary
Function of Blood
- transport through the body of
- oxygen and carbon dioxide
- food molecules (glucose, lipids, amino acids)
- ions (e.g., Na+, Ca2+, HCO3−)
- wastes (e.g., urea)
- hormones
- heat
- defense of the body against infections and other foreign materials. All the WBCs participate in these defenses
Bile - produced in the liver and stored in the gallbladder, released in response to CCK . Bile salts (salts of cholic acid) act to emulsify fats, i.e. to split them so that they can mix with water and be acted on by lipase.
Pancreatic juice: Lipase - splits fats into glycerol and fatty acids. Trypsin, and chymotrypsin - protease enzymes which break polypeptides into dipeptides. Carboxypeptidase - splits dipeptide into amino acids. Bicarbonate - neutralizes acid. Amylase - splits polysaccharides into shorter chains and disaccharides.
Intestinal enzymes (brush border enzymes): Aminopeptidase and carboxypeptidase - split dipeptides into amino acids. Sucrase, lactase, maltase - break disaccharides into monosaccharides. Enterokinase - activates trypsinogen to produce trypsin. Trypsin then activates the precursors of chymotrypsin and carboxypeptidase. Other carbohydrases: dextrinase and glucoamylase. These are of minor importance.
A small fraction of cardiac muscle fibers have myogenicity and autorhythmicity.
Myogenicity is the property of spontaneous impulse generation. The slow sodium channels are leaky and cause the polarity to spontaneously rise to threshold for action potential generation. The fastest of these cells, those in the SA node, set the pace for the heartbeat.
Autorhythmicity - the natural rhythm of spontaneous depolarization. Those with the fastest autorhythmicity act as the 1. heart's pacemaker.
Contractility - like skeletal muscle, most cardiac muscle cells respond to stimuli by contracting. The autorhythmic cells have very little contractility however. Contractility in the other cells can be varied by the effect of neurotransmitters.
Inotropic effects - factors which affect the force or energy of muscular contractions. Digoxin, epinephrine, norepinephrine, and dopamine have positive inotropic effects. Betal blockers and calcium channel blockers have negative inotropic effects
Sequence of events in cardiac conduction: The electrical events in the cardiac cycle.
1) SA node depolarizes and the impulse spreads across the atrial myocardium and through the internodal fibers to the AV node. The atrial myocardium depolarizes resulting in atrial contraction, a physical event.
2) AV node picks up the impulse and transfers it to the AV Bundle (Bundle of His). This produces the major portion of the delay seen in the cardiac cycle. It takes approximately .03 sec from SA node depolarization to the impulse reaching the AV node, and .13 seconds for the impulse to get through the AV node and reach the Bundle of His. Also during this period the atria repolarize.
3) From the AV node the impulse travels through the bundle branches and through the Purkinje fibers to the ventricular myocardium, causing ventricular depolarization and ventricular contraction, a physical event.
4) Ventricular repolarization occurs.
Sensory pathways include only those routes which conduct information to the conscious cortex of the brain. However, we will use the term in its more loosely and commonly applied context to include input from all receptors, whether their signals reach the conscious level or not.
Lipids:
- about 40% of the dry mass of a typical cell
- composed largely of carbon & hydrogen
- generally insoluble in water
- involved mainly with long-term energy storage; other functions are as structural components (as in the case of phospholipids that are the major building block in cell membranes) and as "messengers" (hormones) that play roles in communications within and between cells
- Subclasses include:
- Triglycerides - consist of one glycerol molecule + 3 fatty acids (e.g., stearic acid in the diagram below). Fatty acids typically consist of chains of 16 or 18 carbons (plus lots of hydrogens).
- phospholipids - Composed of 2 fatty acids, glycerol, phosphate and polar groups , phosphate group (-PO4) substitutes for one fatty acid & these lipids are an important component of cell membranes
steroids - have 4 rings- cholesterol, some hormones, found in membranes include testosterone, estrogen, & cholesterol
Conductivity :
Means ability of cardiac muscle to propagate electrical impulses through the entire heart ( from one part of the heart to another) by the excitatory -conductive system of the heart.
Excitatory conductive system of the heart involves:
1. Sinoatrial node ( SA node) : Here the initial impulses start and then conducted to the atria through the anterior inter-atrial pathway ( to the left atrium) , to the atrial muscle mass through the gap junction, and to the Atrioventricular node ( AV node ) through anterior, middle , and posterior inter-nodal pathways.
The average conductive velocity in the atria is 1m/s.
2- AV node : The electrical impulses can not be conducted directly from the atria to the ventricles , because of the fibrous skeleton , which is an electrical isolator , located between the atria and ventricles. So the only conductive way is the AV node . But there is a delay in the conduction occurs in the AV node .
This delay is due to:
- the smaller size of the nodal fiber.
- The less negative resting membrane potential
- fewer gap junctions.
There are three sites for delay:
- In the transitional fibers , that connect inter-nodal pathways with the AV node ( 0.03 ) .
- AV node itself ( 0.09 s) .
- In the penetrating portion of Bundle of Hiss ( 0.04 s) .
This delay actually allows atria to empty blood in ventricles during the cardiac cycle before the beginning of ventricular contraction , as it prevents the ventricles from the pathological high atrial rhythm.
The average velocity of conduction in the AV node is 0.02-0.05 m/s
3- Bundle of Hiss : A continuous with the AV node that passes to the ventricles through the inter-ventricular septum. It is subdivided into : Right and left bundle. The left bundle is also subdivided into two branches: anterior and posterior branches .
4- Purkinje`s fibers: large fibers with velocity of conduction 1.5-4 m/s.
the high velocity of these fibers is due to the abundant gap junctions , and to their nature as very large fibers as well.
The conduction from AV node is a one-way conduction . This prevents the re-entry of cardiac impulses from the ventricles to the atria.
Lastly: The conduction through the ventricular fibers has a velocity of 0.3-0.5 m/s.
Factors , affecting conductivity ( dromotropism) :
I. Positive dromotropic factors :
1. Sympathetic stimulation : it accelerates conduction and decrease AV delay .
2. Mild warming
3. mild hyperkalemia
4. mild ischemia
5. alkalosis
II. Negative dromotropic factors :
1. Parasympathetic stimulation
2. severe warming
3. cooling
4. Severe hyperkalemia
5. hypokalemia
6. Severe ischemia
7. acidosis
8. digitalis drugs.