Talk to us?

- NEETMDS- courses
NEET MDS Lessons
Biochemistry

BIOLOGICAL BUFFER SYSTEMS 

Cells and organisms maintain a specific and constant cytosolic pH, keeping biomolecules in their optimal ionic state, usually near pH 7. In multicelled organisms, the pH of the extracellular fluids (blood, for example) is also tightly regulated. Constancy of pH is achieved primarily by biological buffers : mixtures of weak acids and their conjugate bases 

Body fluids and their principal buffers


Body fluids                     Principal buffers

Extracellular fluids        {Biocarbonate buffer Protein buffer } 

Intracellular fluids         {Phosphate buffer, Protein }

Erythrocytes                 {Hemoglobin buffer}

Riboflavin: Vitamin B2

Riboflavin, or vitamin B2, helps to release energy from foods, promotes good vision, and healthy skin. It also helps to convert the amino acid tryptophan (which makes up protein) into niacin.

RDA Males: 1.3 mg/day; Females: 1.1 mg/day

Deficiency : Symptoms of deficiency include cracks at the corners of the mouth, dermatitis on nose and lips, light sensitivity, cataracts, and a sore, red tongue.

FACTORS AFFECTING ENZYME ACTIVITY

Velocity or rate of enzymatic reaction is assessed by the rate of change in concentration of substrate or product at a given time duration. Various factors which affect the activity of enzymes include:

1. Substrate concentration

2. Enzyme concentration

3. Product concentration

4. Temperature 5. Hydrogen ion concentration (pH)

6. Presence of activators

7. Presence of inhibitor

 

Effect of substrate Concentration :  Reaction velocity of an enzymatic process increases with constant enzyme concentration and increase in substrate concentration.

Effect of enzyme Concentration: As there is optimal substrate concentration, rate of an enzymatic reaction or velocity (V) is directly proportional to the enzyme concentration.

Effect of product concentration In case of a reversible reaction catalyzed by a enzyme, as per the law of mass action the rate of reaction is slowed down with equilibrium. So, rate of reaction is slowed, stopped or even reversed with increase in product concentration

Effect of temperature: Velocity of enzymatic reaction increases with temperature of the medium which they are most efficient and the same is termed as optimum temperature.

Effect of pH: Many enzymes are most efficient in the region of pH 6-7, which is the pH of the cell. Outside this range, enzyme activity drops off very rapidly. Reduction in efficiency caused by changes in the pH is due to changes in the degree of ionization of the substrate and enzyme.

Highly acidic or alkaline conditions bring about a denaturation and subsequent loss of enzymatic activity

Exceptions such as pepsin (with optimum pH 1-2), alkaline phosphatase (with optimum pH 9-10) and acid phosphatase (with optimum pH 4-5)

Presence of activators Presence of certain inorganic ions increases the activity of enzymes. The best examples are chloride ions activated salivary amylase and calcium activated lipases.

Effect of Inhibitors The catalytic enzymatic reaction may be inhibited by substances which prevent the formation of a normal enzyme-substrate complex. The level of inhibition then depends entirely upon the relative concentrations of the true substrate and the inhibitor

Nomenclature for stereoisomers: D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehydes

 

For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group.

Most naturally occurring sugars are D isomers.

D & L sugars are mirror images of one another. They have the same name. For example, D-glucose and L-glucose

Other stereoisomers have unique names, e.g., glucose, mannose, galactose, etc. The number of stereoisomers is 2 n, where n is the number of asymmetric centers. The six-carbon aldoses have 4 asymmetric centers, and thus 16 stereoisomers (8 D-sugars and 8 L-sugars

An aldehyde can react with an alcohol to form a hemiacetal

Similarly a ketone can react with an alcohol to form a hemiketal

 

Pentoses and hexoses can cyclize, as the aldehyde or keto group reacts with a hydroxyl on one of the distal carbons

E.g., glucose forms an intra-molecular hemiacetal by reaction of the aldehyde on C1 with the hydroxyl on C5, forming a six-member pyranose ring, named after the compound pyran

The representations of the cyclic sugars below are called Haworth projections.

 

 

Fructose can form either: 

  • a six-member pyranose ring, by reaction of the C2 keto group with the hydroxyl on C6
  • a 5-member furanose ring, by reaction of the C2 keto group with the hydroxyl on C5.

 

 

Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, α & β

 

Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1 extending either:

  • below the ring (α)
  • above the ring (β).

Because of the tetrahedral nature of carbon bonds, the cyclic form of pyranose sugars actually assume a "chair" or "boat" configuration, depending on the sugar

Ampholytes, Polyampholytes, pI and Zwitterion

Many substances in nature contain both acidic and basic groups as well as many different types of these groups in the same molecule. (e.g. proteins). These are called ampholytes (one acidic and one basic group) or polyampholytes (many acidic and basic groups). Proteins contains many different amino acids some of which contain ionizable side groups, both acidic and basic. Therefore, a useful term for dealing with the titration of ampholytes and polyampholytes (e.g. proteins) is the isoelectric point, pI. This is described as the pH at which the effective net charge on a molecule is zero.

For the case of a simple ampholyte like the amino acid glycine the pI, when calculated from the Henderson-Hasselbalch equation, is shown to be the average of the pK for the a-COOH group and the pK for the a-NH2 group:

pI = [pKa-(COOH) + pKa-(NH3+)]/2

For more complex molecules such as polyampholytes the pI is the average of the pKa values that represent the boundaries of the zwitterionic form of the molecule. The pI value, like that of pK, is very informative as to the nature of different molecules. A molecule with a low pI would contain a predominance of acidic groups, whereas a high pI indicates predominance of basic groups.

Pentose Phosphate Pathway (Hexose Monophosphate Shunt)

The pentose phosphate pathway is primarily an anabolic pathway that utilizes the 6 carbons of glucose to generate 5 carbon sugars and reducing equivalents. However, this pathway does oxidize glucose and under certain conditions can completely oxidize glucose to CO2 and water. The primary functions of this pathway are:

  • To generate reducing equivalents, in the form of NADPH, for reductive biosynthesis reactions within cells.
  • To provide the cell with ribose-5-phosphate (R5P) for the synthesis of the nucleotides and nucleic acids.
  • Although not a significant function of the PPP, it can operate to metabolize dietary pentose sugars derived from the digestion of nucleic acids as well as to rearrange the carbon skeletons of dietary carbohydrates into glycolytic/gluconeogenic intermediates

Enzymes that function primarily in the reductive direction utilize the NADP+/NADPH cofactor pair as co-factors as opposed to oxidative enzymes that utilize the NAD+/NADH cofactor pair. The reactions of fatty acid biosynthesis and steroid biosynthesis utilize large amounts of NADPH. As a consequence, cells of the liver, adipose tissue, adrenal cortex, testis and lactating mammary gland have high levels of the PPP enzymes. In fact 30% of the oxidation of glucose in the liver occurs via the PPP. Additionally, erythrocytes utilize the reactions of the PPP to generate large amounts of NADPH used in the reduction of glutathione. The conversion of ribonucleotides to deoxyribonucleotides (through the action of ribonucleotide reductase) requires NADPH as the electron source, therefore, any rapidly proliferating cell needs large quantities of NADPH.

Regulation: Glucose-6-phosphate Dehydrogenase is the committed step of the Pentose Phosphate Pathway. This enzyme is regulated by availability of the substrate NADP+. As NADPH is utilized in reductive synthetic pathways, the increasing concentration of NADP+ stimulates the Pentose Phosphate Pathway, to replenish NADPH

Buffers           

• Biological systems use buffers to maintain pH.

• Definition: A buffer is a solution that resists a significant change in pH upon addition of an acid or a base.

• Chemically: A buffer is a mixture of a weak acid and its conjugate base

• Example: Bicarbonate buffer is a mixture of carbonic acid (the weak acid) and the bicarbonate ion (the conjugate base): H2CO3 + HCO3

• All OH- or H+ ions added to a buffer are consumed and the overall [H+ ] or pH is not altered

H2CO3 + HCO3 - + H+ <- -> 2H2CO3

H2CO3 + HCO3 -  +  OH<- -> 2HCO3  - + H2O

• For any weak acid / conjugate base pair, the buffering range is its pKa +1.

 

It should be noted that around the pKa the pH of a solution does not change appreciably even when large amounts of acid or base are added. This phenomenon is known as buffering. In most biochemical studies it is important to perform experiments, that will consume H+ or OH- equivalents, in a solution of a buffering agent that has a pKa near the pH optimum for the experiment.

Most biologic fluids are buffered near neutrality. A buffer resist a pH change and consists of a conjugate acid/base pair.

Important Physiological Buffers include carbonate (H2CO3/HCO3-),

Phosphate (H2PO-4 /HPO2-4) and various protiens

Explore by Exams