NEET MDS Lessons
Biochemistry
Step 1. Acyl-CoA Dehydrogenase catalyzes oxidation of the fatty acid moiety of acyl-CoA, to produce a double bond between carbon atoms 2 and 3.
There are different Acyl-CoA Dehydrogenases for short (4-6 C), medium (6-10 C), long and very long (12-18 C) chain fatty acids. Very Long Chain Acyl-CoA Dehydrogenase is bound to the inner mitochondrial membrane. The others are soluble enzymes located in the mitochondrial matrix.
FAD is the prosthetic group that functions as electron acceptor for Acyl-CoA Dehydrogenase.
A glutamate side-chain carboxyl extracts a proton from the a-carbon of the substrate, facilitating transfer of 2 e- with H+ (a hydride) from the b position to FAD. The reduced FAD accepts a second H+, yielding FADH2
The carbonyl oxygen of the thioester substrate is hydrogen bonded to the 2'-OH of the ribityl moiety of FAD, giving this part of FAD a role in positioning the substrate and increasing acidity of the substrate a-proton
The reactive glutamate and FAD are on opposite sides of the substrate at the active site. Thus the reaction is stereospecific, yielding a trans double bond in enoyl-CoA.
FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 electrons to an Electron Transfer Flavoprotein (ETF), which in turn passes the electrons to coenzyme Q of the respiratory chain.
Step 2. Enoyl-CoA Hydratase catalyzes stereospecific hydration of the trans double bond produced in the 1st step of the pathway, yielding L-hydroxyacyl-Coenzyme A
Step 3. Hydroxyacyl-CoA Dehydrogenase catalyzes oxidation of the hydroxyl in the b position (C3) to a ketone. NAD+ is the electron acceptor.
Step 4. b-Ketothiolase (b-Ketoacyl-CoA Thiolase) catalyzes thiolytic cleavage.
A cysteine S attacks the b-keto C. Acetyl-CoA is released, leaving the fatty acyl moiety in thioester linkage to the cysteine thiol. The thiol of HSCoA displaces the cysteine thiol, yielding fatty acyl-CoA (2 C shorter).
A membrane-bound trifunctional protein complex with two subunit types expresses the enzyme activities for steps 2-4 of the b-oxidation pathway for long chain fatty acids. Equivalent enzymes for shorter chain fatty acids are soluble proteins of the mitochondrial matrix.
Summary of one round of the b-oxidation pathway:
fatty acyl-CoA + FAD + NAD+ + HS-CoA →
fatty acyl-CoA (2 C shorter) + FADH2 + NADH + H+ + acetyl-CoA
The b-oxidation pathway is cyclic. The product, 2 carbons shorter, is the input to another round of the pathway. If, as is usually the case, the fatty acid contains an even number of C atoms, in the final reaction cycle butyryl-CoA is converted to 2 copies of acetyl-CoA
ATP production:
- FADH2 of Acyl CoA Dehydrogenase is reoxidized by transfer of 2 e- via ETF to coenzyme Q of the respiratory chain. H+ ejection from the mitochondrial matrix that accompanies transfer of 2 e- from CoQ to oxygen, leads via chemiosmotic coupling to production of approximately 1.5 ATP. (Approx. 4 H+ enter the mitochondrial matrix per ATP synthesized.)
- NADH is reoxidized by transfer of 2 e- to the respiratory chain complex I. Transfer of 2 e- from complex I to oxygen yields approximately 2.5 ATP.
- Acetyl-CoA can enter Krebs cycle, where the acetate is oxidized to CO2, yielding additional NADH, FADH2, and ATP.
- Fatty acid oxidation is a major source of cellular ATP
b-Oxidation of very long chain fatty acids also occurs within peroxisomes
FAD is electron acceptor for peroxisomal Acyl-CoA Oxidase, which catalyzes the first oxidative step of the pathway. The resulting FADH2 is reoxidized in the peroxisome producing hydrogen peroxide FADH2 + O2 à FAD + H2O2
The peroxisomal enzyme Catalase degrades H2O2 by the reaction:
2 H2O2 → 2 H2O + O2
These reactions produce no ATP
Once fatty acids are reduced in length within the peroxisomes they may shift to the mitochondria to be catabolized all the way to CO2. Carnitine is also involved in transfer of fatty acids into and out of peroxisomes
Monosaccharides: Aldoses (e.g., glucose) have an aldehyde at one end
They are classified acc to the number of carbon atoms present
Trioses, tetroses, pentose ( ribose, deoxyribose), hexoses (glucose, galactose, fructose) Heptoses (sedoheptulose)
Glyceraldehyde simplest aldose
Ketoses (e.g., fructose) have a keto group, usually at C 2.
Dihydroxyacetone simplest Ketoses
The higher sugar exists in ring form rather than chain form
Furan : 4 carbons and 1 oxygen
Pyrans : 5 carban and 1 oxygen
These result from formation of hemiacital linkage b/w carbonyl and an alcohol group
The basic characteristics of enzymes includes
(i) Almost all the enzymes are proteins and they follow the physical and chemical reactions of proteins (ii) Enzymes are sensitive and labile to heat
(iii) Enzymes are water soluble
(iv) Enzymes could be precipitated by protein precipitating agents such as ammonium sulfate and trichloroacetic acid.
Sugar derivatives
Sugar alcohol - lacks an aldehyde or ketone. An example is ribitol.
Sugar acid - the aldehyde at C1, or the hydroxyl on the terminal carbon, is oxidized to a carboxylic acid. Examples are gluconic acid and glucuronic acid
Amino sugar - an amino group substitutes for one of the hydroxyls. An example is glucosamine. The amino group may be acetylated.
N-acetylneuraminate, (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins. Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH.
Glycosidic bonds: The anomeric hydroxyl group and a hydroxyl group of another sugar or some other compound can join together, splitting out water to form a glycosidic bond.
R-OH + HO-R' → R-O-R' + H2O
Disaccharides: Maltose, a cleavage product of starch, is a disaccharide with an α (1→4) glycosidic linkage between the C1 hydroxyl of one glucose and the C4 hydroxyl of a second glucose. Maltose is the α anomer, because the O at C1 points down from the ring.
Cellobiose, a product of cellulose breakdown, is the otherwise equivalent β anomer. The configuration at the anomeric C1 is β (O points up from the ring). The β(1→4) glycosidic linkage is represented as a "zig-zag" line, but one glucose residue is actually flipped over relative to the other.
Other disaccharides
- Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is α (O points down from the ring), the linkage is designated α (1→2). The full name is α -D-glucopyranosyl-(1→2) β -D- fructopyranose.
- Lactose, milk sugar, is composed of glucose and galactose with β (→4) linkage → the anomeric hydroxyl of galactose. Its full name is β -D-galactopyranosyl-(1→)- α -D-glucopyranose
Polysaccharides:
Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects
Amylose is a glucose polymer with α (1→4) glycosidic linkages, as represented above. The end of the polysaccharide with an anomeric carbon (C1) that is not involved in a glycosidic bond is called the reducing end
Amylopectin is a glucose polymer with mainly α (1→4) linkages, but it also has branches formed by α (1→6) linkages. The branches are generally longer than shown above. The branches produce a compact structure, and provide multiple chain ends at which enzymatic cleavage of the polymer can occur.
Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more α (1→6) branches. The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle cells during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.
Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose, with β (1→4) linkages. Every other glucose in cellulose is flipped over, due to the β linkages. This promotes intrachain and interchain hydrogen bonds, as well as van der Waals interactions, that cause cellulose chains to be straight and rigid, and pack with a crystalline arrangement in thick bundles called microfibrils.
Glycosaminoglycans (mucopolysaccharides) are polymers of repeating disaccharides. Within the disaccharides, the sugars tend to be modified, with acidic groups, amino groups, sulfated hydroxyl and amino groups, etc. Glycosaminoglycans tend to be negatively charged, because of the prevalence of acidic groups.
Hyaluronate is a glycosaminoglycan with a repeating disaccharide consisting of two glucose derivatives, glucuronate (glucuronic acid) and N-acetylglucosamine. The glycosidic linkages are β(1→3) and β(1→4).
When covalently linked to specific core proteins, glycosaminoglycans form complexes called proteoglycans. Some proteoglycans of the extracellular matrix in turn link non-covalently to hyaluronate via protein domains called link modules. For example, in cartilage multiple copies of the aggrecan proteoglycan bind to an extended hyaluronate backbone to form a large complex Versican, another proteoglycan that binds to hyaluronate, is in the extracellular matrix of loose connective tissues.
Heparan sulfate is initially synthesized on a membrane-embedded core protein as a polymer of alternating glucuronate and N-acetylglucosamine residues. Later, in segments of the polymer, glucuronate residues may be converted to a sulfated sugar called iduronic acid, while N-acetylglucosamine residues may be deacetylated and/or sulfated
Heparin, a glycosaminoglycan found in granules of mast cells, has a structure similar to that of heparan sulfates, but is relatively highly sulfated.
Some cell surface heparan sulfate glycosaminoglycans remain covalently linked to core proteins embedded in the plasma membrane. Proteins involved in signaling and adhesion at the cell surface have been identified that recognize and bind segments of heparan sulfate chains having particular patterns of sulfation
Lectins are glycoproteins that recognize and bind to specific oligosaccharides.
- Concanavalin A and wheat germ agglutinin are plant lectins that have been useful research tools
- Mannan-binding lectin (MBL) is a glycoprotein found in blood plasma. It associates with cell surface carbohydrates of disease-causing microorganisms, promoting phagocytosis of these organisms as part of the immune response.
- Selectins are integral proteins of the plasma membrane with lectin-like domains that protrude on the outer surface of mammalian cells. Selectins participate in cell-cell recognition and binding.
Enzyme Kinetics
Enzymes are protein catalysts that, like all catalysts, speed up the rate of a chemical reaction without being used up in the process. They achieve their effect by temporarily binding to the substrate and, in doing so, lowering the activation energy needed to convert it to a product.
The rate at which an enzyme works is influenced by several factors, e.g.,
- the concentration of substrate molecules (the more of them available, the quicker the enzyme molecules collide and bind with them). The concentration of substrate is designated [S] and is expressed in unit of molarity.
- the temperature. As the temperature rises, molecular motion - and hence collisions between enzyme and substrate - speed up. But as enzymes are proteins, there is an upper limit beyond which the enzyme becomes denatured and ineffective.
- the presence of inhibitors.
- competitive inhibitors are molecules that bind to the same site as the substrate - preventing the substrate from binding as they do so - but are not changed by the enzyme.
- noncompetitive inhibitors are molecules that bind to some other site on the enzyme reducing its catalytic power.
- pH. The conformation of a protein is influenced by pH and as enzyme activity is crucially dependent on its conformation, its activity is likewise affected.
The study of the rate at which an enzyme works is called enzyme kinetics.
LIPOPROTIENS
Lipoproteins Consist of a Nonpolar Core & a Single Surface Layer of Amphipathic Lipids
The nonpolar lipid core consists of mainly triacylglycerol and cholesteryl ester and is surrounded by a single surface layer of amphipathic phospholipid and cholesterol molecules .These are oriented so that their polar groups face outward to the aqueous medium. The protein moiety of a lipoprotein is known as an apolipoprotein or apoprotein,constituting nearly 70% of some HDL and as little as 1% of Chylomicons. Some apolipoproteins are integral and cannot be removed, whereas others can be freely transferred to other lipoproteins.
There re five types of lipoproteins, namely chylomicrons, very low density lipoproteins(VLDL) low density lipoproteins (LDL), high density Lipoproteins (HDL) and free fatty acid-albumin complexes.
Clinical significance
Primary hyperparathyroidism is due to autonomous, abnormal hypersecretion of PTH in the parathyroid gland
Secondary hyperparathyroidism is an appropriately high PTH level seen as a physiological response to hypocalcemia.
A low level of PTH in the blood is known as hypoparathyroidism and is most commonly due to damage to or removal of parathyroid glands during thyroid surgery.