NEET MDS Lessons
Biochemistry
MAGNESIUM
The normal serum level of Magnesium is 1.8 to 2.2. mg/dl.
Functions of Magnesium
(a) Irritability of neuromuscular tissues is lowered by Magnesium
(b) Magnesium deficiency leads to decrease in Insulin dependent uptake of glucose
(c) Magnesium supplementation improves glucose tolerance
Causes such as liver cirrhosis, protein calorie malnutrition and hypo para thyroidism leads to hypomagnesemia
The main causes of hypermagnesemia includes renal failure, hyper para thyroidism, rickets, oxalate poisoning and multiple myeloma.
VITAMIN C: ASCORBIC ACID, ASCORBATE
Vitamin C benefits the body by holding cells together through collagen synthesis; collagen is a connective tissue that holds muscles, bones, and other tissues together. Vitamin C also aids in wound healing, bone and tooth formation, strengthening blood vessel walls, improving immune system function, increasing absorption and utilization of iron, and acting as an antioxidant.
RDA The Recommended Dietary Allowance (RDA) for Vitamin C is 90 mg/day for adult males and 75 mg/day for adult females
Vitamin C Deficiency
Severe vitamin C deficiency result in the disease known as scurvy, causing a loss of collagen strength throughout the body. Loss of collagen results in loose teeth, bleeding and swollen gums, and improper wound healing.
Sugar derivatives
Sugar alcohol - lacks an aldehyde or ketone. An example is ribitol.
Sugar acid - the aldehyde at C1, or the hydroxyl on the terminal carbon, is oxidized to a carboxylic acid. Examples are gluconic acid and glucuronic acid
Amino sugar - an amino group substitutes for one of the hydroxyls. An example is glucosamine. The amino group may be acetylated.
N-acetylneuraminate, (N-acetylneuraminic acid, also called sialic acid) is often found as a terminal residue of oligosaccharide chains of glycoproteins. Sialic acid imparts negative charge to glycoproteins, because its carboxyl group tends to dissociate a proton at physiological pH.
Glycosidic bonds: The anomeric hydroxyl group and a hydroxyl group of another sugar or some other compound can join together, splitting out water to form a glycosidic bond.
R-OH + HO-R' → R-O-R' + H2O
Disaccharides: Maltose, a cleavage product of starch, is a disaccharide with an α (1→4) glycosidic linkage between the C1 hydroxyl of one glucose and the C4 hydroxyl of a second glucose. Maltose is the α anomer, because the O at C1 points down from the ring.
Cellobiose, a product of cellulose breakdown, is the otherwise equivalent β anomer. The configuration at the anomeric C1 is β (O points up from the ring). The β(1→4) glycosidic linkage is represented as a "zig-zag" line, but one glucose residue is actually flipped over relative to the other.
Other disaccharides
- Sucrose, common table sugar, has a glycosidic bond linking the anomeric hydroxyls of glucose and fructose. Because the configuration at the anomeric carbon of glucose is α (O points down from the ring), the linkage is designated α (1→2). The full name is α -D-glucopyranosyl-(1→2) β -D- fructopyranose.
- Lactose, milk sugar, is composed of glucose and galactose with β (→4) linkage → the anomeric hydroxyl of galactose. Its full name is β -D-galactopyranosyl-(1→)- α -D-glucopyranose
Polysaccharides:
Plants store glucose as amylose or amylopectin, glucose polymers collectively called starch. Glucose storage in polymeric form minimizes osmotic effects
Amylose is a glucose polymer with α (1→4) glycosidic linkages, as represented above. The end of the polysaccharide with an anomeric carbon (C1) that is not involved in a glycosidic bond is called the reducing end
Amylopectin is a glucose polymer with mainly α (1→4) linkages, but it also has branches formed by α (1→6) linkages. The branches are generally longer than shown above. The branches produce a compact structure, and provide multiple chain ends at which enzymatic cleavage of the polymer can occur.
Glycogen, the glucose storage polymer in animals, is similar in structure to amylopectin. But glycogen has more α (1→6) branches. The highly branched structure permits rapid release of glucose from glycogen stores, e.g., in muscle cells during exercise. The ability to rapidly mobilize glucose is more essential to animals than to plants.
Cellulose, a major constituent of plant cell walls, consists of long linear chains of glucose, with β (1→4) linkages. Every other glucose in cellulose is flipped over, due to the β linkages. This promotes intrachain and interchain hydrogen bonds, as well as van der Waals interactions, that cause cellulose chains to be straight and rigid, and pack with a crystalline arrangement in thick bundles called microfibrils.
Glycosaminoglycans (mucopolysaccharides) are polymers of repeating disaccharides. Within the disaccharides, the sugars tend to be modified, with acidic groups, amino groups, sulfated hydroxyl and amino groups, etc. Glycosaminoglycans tend to be negatively charged, because of the prevalence of acidic groups.
Hyaluronate is a glycosaminoglycan with a repeating disaccharide consisting of two glucose derivatives, glucuronate (glucuronic acid) and N-acetylglucosamine. The glycosidic linkages are β(1→3) and β(1→4).
When covalently linked to specific core proteins, glycosaminoglycans form complexes called proteoglycans. Some proteoglycans of the extracellular matrix in turn link non-covalently to hyaluronate via protein domains called link modules. For example, in cartilage multiple copies of the aggrecan proteoglycan bind to an extended hyaluronate backbone to form a large complex Versican, another proteoglycan that binds to hyaluronate, is in the extracellular matrix of loose connective tissues.
Heparan sulfate is initially synthesized on a membrane-embedded core protein as a polymer of alternating glucuronate and N-acetylglucosamine residues. Later, in segments of the polymer, glucuronate residues may be converted to a sulfated sugar called iduronic acid, while N-acetylglucosamine residues may be deacetylated and/or sulfated
Heparin, a glycosaminoglycan found in granules of mast cells, has a structure similar to that of heparan sulfates, but is relatively highly sulfated.
Some cell surface heparan sulfate glycosaminoglycans remain covalently linked to core proteins embedded in the plasma membrane. Proteins involved in signaling and adhesion at the cell surface have been identified that recognize and bind segments of heparan sulfate chains having particular patterns of sulfation
Lectins are glycoproteins that recognize and bind to specific oligosaccharides.
- Concanavalin A and wheat germ agglutinin are plant lectins that have been useful research tools
- Mannan-binding lectin (MBL) is a glycoprotein found in blood plasma. It associates with cell surface carbohydrates of disease-causing microorganisms, promoting phagocytosis of these organisms as part of the immune response.
- Selectins are integral proteins of the plasma membrane with lectin-like domains that protrude on the outer surface of mammalian cells. Selectins participate in cell-cell recognition and binding.
PHOSPHOLIPIDS
These are complex or compound lipids containing phosphoric acid, in addition to fatty acids, nitrogenous base and alcohol
There are two classes of phospholipids
1. Glycerophospholipids (or phosphoglycerides) that contain glycerol as the alcohol.
2. Sphingophospholipids (or sphingomyelins) that contain sphingosine as the alcohol
Glycerophospholipids
Glycerophospholipids are the major lipids that occur in biological membranes. They consist of glycerol 3-phosphate esterified at its C1 and C2 with fatty acids. Usually, C1 contains a saturated fatty acid while C2 contains an unsaturated fatty acid.
In glycerophospholipids, we refer to the glycerol residue (highlighted red above) as the "glycerol backbone."
Glycerophospholipids are Amphipathic
Glycerophospholipids are sub classified as
1. Phosphatidylethanolamine or cephalin also abbreviated as PE is found in biological membranes and composed of ethanolamine bonded to phosphate group on diglyceride.
2. Phosphatidylcholine or lecithin or PC which has chloline bonded with phosphate group and glycerophosphoric acid with different fatty acids like palmitic or hexadecanoic acid, margaric acid, oleic acid. It is a major component of cell membrane and mainly present in egg yolk and soy beans.
3. Phosphatidic acid (phosphatidate) (PA)
It consists of a glycerol with one saturated fatty acid bonded to carbon-1 of glycerol and an unsaturated fatty acid bonded to carbon-2 with a phosphate group bonded to carbon-3.
4.Phosphatidylserine (PS)
This phospholipid contains serine as an organic compound with other main components of phospholipids. Generally it found on the cytosolic side of cell membranes.
5. Phosphoinositides
It is a group of phospholipids which are negatively charged and act as a a minor component in the cytosolic side of eukaryotic cell membranes. On the basis of different number of phosphate groups they can be different types like phosphatidylinositol phosphate (PIP), phosphatidylinositol bisphosphate(PIP2) and phosphatidylinositol trisphosphate (PIP3). PIP, PIP2 and PIP3 and collectively termed as phosphoinositide.
6. Cardiolipin :
lt is so named as it was first isolated from heart muscle. Structurally, a cardiolipin consists of two molecules of phosphatidic acid held by an additional glycerol through phosphate groups. lt is an important component of inner mitochondrial membrane. Cardiolipin is the only phosphoglyceride that possesses antigenic properties.
During fasting or carbohydrate starvation, oxaloacetate is depleted in liver because it is used for gluconeogenesis. This impedes entry of acetyl-CoA into Krebs cycle. Acetyl-CoA then is converted in liver mitochondria to ketone bodies, acetoacetate and b-hydroxybutyrate.
Three enzymes are involved in synthesis of ketone bodies:
b-Ketothiolase. The final step of the b-oxidation pathway runs backwards, condensing 2 acetyl-CoA to produce acetoacetyl-CoA, with release of one CoA.
HMG-CoA Synthase catalyzes condensation of a third acetate moiety (from acetyl-CoA) with acetoacetyl-CoA to form hydroxymethylglutaryl-CoA (HMG-CoA).
HMG-CoA Lyase cleaves HMG-CoA to yield acetoacetate plus acetyl-CoA.
b-Hydroxybutyrate Dehydrogenase catalyzes inter-conversion of the ketone bodies acetoacetate and b-hydroxybutyrate.
Ketone bodies are transported in the blood to other tissue cells, where they are converted back to acetyl-CoA for catabolism in Krebs cycle
By rearranging the above equation we arrive at the Henderson-Hasselbalch equation:
pH = pKa + log[A-]/[HA]
It should be obvious now that the pH of a solution of any acid (for which the equilibrium constant is known, and there are numerous tables with this information) can be calculated knowing the concentration of the acid, HA, and its conjugate base [A-].
At the point of the dissociation where the concentration of the conjugate base [A-] = to that of the acid [HA]:
pH = pKa + log[1]
The log of 1 = 0. Thus, at the mid-point of a titration of a weak acid:
pKa = pH
In other words, the term pKa is that pH at which an equivalent distribution of acid and conjugate base (or base and conjugate acid) exists in solution.
The amino acids buffer system
Amino acids contain in their molecule both an acidic (− COOH) and a basic (− NH2) group. They can be visualized as existing in the form of a neutral zwitterion in which a hydrogen atom can pass between the carboxyl and amino groups.
By the addition or subtraction of a hydrogen ion to or from the zwitterion, either the cation or anion form will be produced
Thus, when OH− ions are added to the solution of amino acid, they take up H+ from it to form water, and the anion is produced. If H+ ions are added, they are taken up by the zwitterion to produce the cation form. In practice, if NaOH is added, the salt H2N - CH2 - COONa would be formed. and the addition of HCl would result in the formation of amino acid hydrochloride.